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Abstract 
 

Data-extrapolation technologies allow innovators to import and apply empirical 
patterns from one domain to another. Yet, because they depend on prior data, these tools 
may steer innovation towards data-rich areas. The impact of this shift depends on whether 
the initial data was produced in areas prioritized for importance or feasibility. I present a 
simple conceptual framework in which data is not randomly generated but shaped by 
scientists’ past priorities and constraints and show how data-extrapolation tools can alter 
the composition of viable ideas by lowering costs only in data-rich domains. I empirically 
examine these dynamics in the setting of structural biology, where I investigate the 
introduction of a data-extrapolation technology. I exploit the variation in prior data 
availability to compare areas where the tool was usable to those where it was not. I find 
that while the technology increased the quantity of research in data-rich areas, it had limited 
impact on yielding new biological insights. 
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1.  Introduction 

Data-extrapolation technologies—tools that import and apply insights from past data—are 

becoming increasingly ubiquitous. These tools mine empirical patterns from one context and 

extend them to another, enabling progress even when the underlying mechanisms are not well 

understood. Data-extrapolation technologies can serve as shortcuts, allowing knowledge workers 

to make progress without first developing full theoretical models or causal explanations. 

Yet, despite their powerful capabilities, data-extrapolation technologies face a critical 

limitation: they cannot function without a stock of prior, digitized data (Cockburn, Henderson, 

and Stern 2018). As these tools become central to innovation, the availability of data may thus 

shape the trajectory of knowledge production, steering the line of inquiry towards data-rich areas 

over data-poor ones. Consider Large Language Models, which have flourished thanks to the vast 

corpus of digitized text. In contrast, progress in intelligent robotics—once central to early visions 

of AI—has lagged, partly due to the lack of video data (Gibney 2024). AI’s trajectory has been 

shaped as much by data availability as by societal value. 

Understanding where data accumulates is thus essential. While large-scale mapping efforts 

aim for comprehensive coverage (Williams 2013; Nagaraj 2022; Kao 2024), most datasets are 

unevenly generated, shaped by past priorities and constraints (Nagaraj and Stern 2020). If data 

accumulates in domains of high scientific promise, data-extrapolation tools can unearth valuable 

discoveries. The Human Genome Project, for example, was deliberately created to map the genome, 

catalyzing advancements in both biology and bioinformatics. However, in some cases, 

tractability—not underlying importance—drives data availability. For instance, Atari 2600 games 

from the late 1970s have become a benchmark environment for reinforcement learning not due to 

the games’ intrinsic value but because they provide readily available action-reward data. 

I develop a simple conceptual framework to understand where data tends to accumulate and 

how data-extrapolation tools impact subsequent innovation. Knowledge workers choose projects 

based on the expected benefit relative to difficulty, a process that both generates new data and is 

shaped by pre-existing data. Data-extrapolation technologies lower the cost of doing research and 

expand the set of viable projects—but only in domains with existing data. Whether these tools 

unlock important discoveries that were previously too costly or merely low-value projects that 

were formerly not worth pursuing depends on the composition of prior data and the extent to 

which earlier frictions left socially valuable projects unexplored. Data-extrapolation technologies 
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may also introduce new frictions, such as free-riding, that discourage research efforts in data-poor 

areas. 

Empirically studying this framework poses several challenges. To assess whether a data-

extrapolation technology shifts the direction of innovation, one must observe not only realized 

research projects but also those that could have been pursued in the absence of the technology—

an often unobservable counterfactual. There must also be a credible way to measure the 

availability of past data, as well as the similarity between potential projects, since extrapolation 

technologies work by applying insights from one past project to a new but related project. Finally, 

this technology must differentially treat only some areas of the setting, such that outcomes in the 

areas where the technology was introduced can be compared to the areas without the technology. 

I focus on the setting of structural biology, a field with empirical features ideally suited for 

this paper. Structural biology studies the 3D structures of proteins and has contributed to more 

than a dozen Nobel prizes, as proteins play vital roles in nearly all biological processes. Elucidating 

a protein structure at atomic resolution—or “solving” the structure—can reveal the protein’s 

function, which helps with applications such as designing vaccines that target the spike proteins 

of SARS-CoV-2. Crucially, structural biology offers several empirical features that allow me to 

identify how a data-extrapolation technology may have shaped the rate and direction of innovation. 

First, unlike many settings where only realized projects are observable, structural biology 

provides a window into the entire project landscape. Using a database of all known proteins, I 

observe which proteins structural biologists chose to explore and which they left unexplored. In 

addition, similarity between projects can be quantified in structural biology: proteins are composed 

of amino acid sequences, so they can be grouped based on their sequence similarity. This makes 

it possible to map out the landscape of all known proteins and see which areas of the landscape 

have been explored (which I term “bright” clusters of proteins) and which areas remain unexplored 

and do not have an accumulation of prior structural data (which I term “dark” clusters). 

Second, structural biology is well-suited for studying data-extrapolation technologies. 

Solving a protein structure involves deep knowledge of biology, physics, and statistics, but many 

of the steps have now become automated. The specific technology I examine is the software 

program Phaser, released in 2003, which automates a method called molecular replacement (MR). 

Rather than solving a structure from scratch, MR extrapolates from previously solved proteins 

with similar amino acid sequences to help determine new structures. 

Finally, this data-extrapolation technology differentially treated only parts of the project 

landscape. Since MR relies on prior structure data, MR only works for bright clusters of proteins 
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(i.e., clusters with previously solved structures), and does not work for dark clusters. This enables 

a difference-in-differences design where bright and dark clusters serve as the treatment and control 

groups. By linking Swiss-Prot (a database of all known proteins) to the Protein Data Bank (a 

database of protein structures), I examine changes in the quantity and quality of solved structures 

in bright clusters after the arrival of MR, relative to dark clusters. 

My first set of results focuses on the volume of innovation. MR reduced the cost of solving 

proteins in bright clusters, and this reduction in cost—perhaps unsurprisingly—increased the total 

number of structures solved in those clusters. This effect was sustained throughout the entire 

sample period: bright clusters got brighter and brighter. 

The key question is whether MR facilitated the solving of important proteins that were 

previously inaccessible or low-importance proteins that only became worth solving after costs fell. 

To answer this, one must consider how scientists choose which proteins to solve—a decision 

process that helps explain both why bright clusters became bright in the first place and how MR 

impacts subsequent research activities. Scientists select proteins by weighing expected benefit 

(scientific importance of the protein) against cost (technical difficulty). If scientists were 

maximizing Δ = Importance – Cost, then bright clusters must have been initially targeted because 

they contained proteins whose importance outweighed their cost. In the absence of frictions, most 

high-value, tractable proteins would likely have been prioritized before MR. The remaining 

proteins in bright clusters would then fall into two categories: (i) important but too difficult, or 

(ii) unimportant and not easy enough to justify solving. If the former, MR—by lowering cost—

may enable access to valuable targets that had been too challenging to pursue. If the latter, MR 

would lead to the solving of easy but less important proteins. 

My results support the latter case. After MR, bright clusters disproportionately received 

structures that were scientifically less meaningful: they yielded fewer functional annotations, were 

cited less frequently by patents, and had lower publication impact. These patterns also hold after 

conditioning on difficulty, which isolates variation in importance from variation in cost. Even in 

hard clusters, MR did not unlock structures that yielded deeper insights. 

While MR may not have led to the elucidation of biologically significant proteins, the 

increase in research quantity can still be valuable. I observe that proteins in bright clusters were 

frequently mentioned in the text of downstream articles, even if not formerly cited. This suggests 

that these structures may not have had broad citation impact but still served as useful technical 

inputs to follow-on research. MR also increased the number of well-executed structures (e.g., those 
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with better resolution), which are especially important in contexts that rely on structural precision, 

such as drug development or machine learning applications that require high-quality data. 

In addition to assessing whether MR unlocked high- or low-importance proteins in bright 

clusters, it is also important to ask whether MR led to an overall expansion of research in 

structural biology or instead reallocated effort from under-explored dark clusters. I find that the 

increase in bright clusters was largely driven by scientists from non-elite institutions and those 

with limited prior experience in structural biology, suggesting that MR appeared to have lowered 

entry barriers and attracted new entrants rather than diverting effort from dark clusters. 

Furthermore, while MR could reduce incentives to explore dark clusters—since solving the first 

structure generates spillovers that lower the cost of solving similar structures and enable others 

to free-ride using MR—the extent of this effect appears limited. Suggestive evidence indicates that 

labs often reuse their own templates and rapidly make use of the structure data they generate. 

A potential identification concern is that bright and dark clusters may have been evolving 

on different trends before MR. First, while bright clusters may have been initially targeted because 

they were more important or easier, such differences in levels do not threaten the difference-in-

difference design, as long as pre-trends are parallel, which I verify in the event study figures. 

Second, I control for predicted brightness based on ex-ante traits related to biological importance 

and technical feasibility. The idea is to compare clusters that are similar ex-ante but happened to 

differ in whether they were bright or dark when MR arrived. Even after controlling for predicted 

brightness, the effect of actual brightness remains significant. 

Taken together, these results underscore both the benefits and the limitations of data-

extrapolation technologies. These tools reduce the cost of exploiting data-rich areas by borrowing 

insights from past data and can generate socially valuable outputs. In the case of MR, this led to 

a sustained increase in solved structures—many of which were technically well-executed and 

frequently referenced—but they yielded limited biological insights. More broadly, these findings 

illustrate that the impact of data-extrapolation technologies depends on the availability and 

composition of prior data, and may channel research toward already well-explored areas where 

returns are incremental. While I find limited evidence of reallocation in this setting, the fact that 

research choices both depend on and contribute to the data landscape suggests such technologies 

can reinforce existing patterns of data accumulation. 

This paper contributes to several lines of research. I first build on a body of evidence that 

examines how technologies can both advance and constrain knowledge production (Barbosu and 

Teodoridis 2024). Some studies caution that standardized tools may limit exploration by anchoring 
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researchers to established approaches (Mannucci 2017; Anthony 2021; Miric, Ozalp, and Yilmaz 

2023), while others emphasize that research tools and infrastructure can broaden participation 

and open new directions (Furman and Stern 2011; Teodoridis 2018). Recent literature on AI, in 

particular, often frames it as a tool of exploration and recombinant innovation (Agrawal, Gans, 

and Goldfarb 2018; Agrawal, McHale, and Oettl 2018). I add to this work by showing that data-

extrapolation technologies, though celebrated for their ability to uncover novel connections, is 

constrained by their reliance on prior templates. 

AI’s dependence on data underscores a broader concern studied in a second stream of 

literature to which I contribute: how data shapes the development and use of AI. While much of 

this work has focused on algorithmic bias arising from poor-quality training data (Cowgill et al. 

2020; Choudhury, Starr, and Agarwal 2020), I join a smaller set of studies that emphasize how 

the very absence or presence of data can influence where innovations occur (Cockburn, Henderson, 

and Stern 2018). A particularly relevant contribution is Hoelzemann et al. (2024), who illustrate 

the “streetlight effect” of data through a bandit model in which data on moderately promising 

options can deter exploration. While their model treats the initial data as given, I offer a 

complementary view in which data is the product of past choices and additionally examine how 

data-extrapolation tools shape innovation by lowering costs in data-rich domains. 

This paper also joins the nascent literature on AI as a correlation tool (Mullainathan and 

Rambachan 2024; Tranchero 2023a; 2023b). Most discussions of AI’s limitations focus on where 

AI is feasible given data quality or availability. I instead highlight where data-extrapolation tools 

like AI are useful by noting that they are especially valuable in domains where theory is 

underdeveloped. Domains with well-understood causal mechanisms have less need for correlation-

driven tools. 

Lastly, I leverage the setting of structural biology, which was first brought to the attention 

of social scientists by Hill and Stein (2025b; 2025a) in their analyses of the priority reward system 

in science. As a field with rich scientific achievements and unusually detailed empirical data, 

structural biology has emerged as an attractive setting for innovation research (e.g., Zhuo 2023). 

The rest of the paper proceeds as follows. Section 2 provides a conceptual framework on 

data generation and the impact of data-extrapolation technologies on innovation. Section 3 

introduces the context of structural biology, and Section 4 describes the main data sources. Section 

5 outlines the difference-and-differences design that underpins this study’s empirical strategy. 

Section 6 presents the results, while Section 7 discusses the broader implications and concludes. 
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2.  Conceptual Framework 

Data-extrapolation technologies import and apply empirical patterns from one domain to 

another. They enable recombinant innovation by uncovering connections across disparate areas 

(Agrawal, Gans, and Goldfarb 2018; Agrawal, McHale, and Oettl 2018). But beyond 

recombination, these tools’ strength lies in detecting correlations without requiring causal 

understanding (Mullainathan and Rambachan 2024; Tranchero 2023a). 

I argue that data-extrapolation technologies offer a form of shortcut—facilitating progress 

without requiring a deep understanding of causal mechanisms—and are especially useful in 

domains with limited theoretical foundations. In well-theorized domains, researchers have less 

need for pattern-driven tools and can instead rely on tools derived from causal models; mechanical 

engineers, for instance, often use simulation tools grounded in physical laws. In contrast, where 

theory is sparse, AI’s ability to substitute empirical patterns for theoretical insights become 

particularly valuable. 

However, data-extrapolation technologies face a critical limitation: the availability of data. 

Because data is unevenly generated and the product of past priorities and constraints, the impact 

of data-extrapolation technologies depends on where data exists and whether they amplify 

innovations in important or merely tractable domains. To explore these dynamics, I develop a 

simple conceptual framework in which scientists choose projects based on expected benefits minus 

costs—a decision that both generates new data and is shaped by existing data. Data-extrapolation 

technologies influence this process by lowering the cost of research in domains where data already 

exists. I illustrate this framework using the setting of structural biology. 

2.1 Scientists’ Objective 

As described in greater detail in Section 3, the goal of structural biology is to “solve” the 3D 

atomic structure of proteins, as visualizing a protein’s structure can offer critical insights into its 

biological function. I assume that scientists choose which proteins to solve by maximizing the 

difference between expected scientific importance and the cost of solving them: 

Δ = Importance – Cost 

Importance refers to whether the scientist believes a protein structure will yield an important 

biological insight, while the cost refers to the technical difficulty of solving the protein due to its 

physiochemical properties. 
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A protein is socially beneficial to solve if its true scientific importance exceeds its true costs:  

Δsocial = Social Importance − Social Cost 

Social importance reflects the structure’s broader contribution to downstream innovation, beyond 

the private benefits to the scientist. Social cost includes both the direct cost of solving the protein 

and the opportunity cost of forgone research the scientist could have pursued instead. In the 

absence of distortions or information frictions, scientists’ private decisions align with the socially 

optimal objectives. 

2.2 Impact of MR 

Data-extrapolation technologies depend on the availability of existing data. One example of 

a data-extrapolation technology is molecular replacement (MR), a method used in structural 

biology to solve the structure of proteins. Instead of relying on time-consuming experimental 

procedures, MR uses previously solved protein structures as templates to help determine the 

structure of new, similar proteins. Because MR relies on similarity to existing structures, it only 

works in parts of the protein landscape where structural data already exists. I refer to these as 

“bright clusters”—groups of proteins with at least one previously solved member.1 MR lowers the 

cost of solving structures in these bright clusters and can turn formerly unattractive proteins (Δ 

< 0) into viable candidates (Δ > 0).  

What remains an empirical question is where in the Δ distribution MR has its greatest 

effect: does it unlock high-importance proteins whose cost was too prohibitive? Or does it primarily 

facilitate solving low-importance proteins that only became worthwhile once costs fell? While MR 

is socially valuable in either case as long as it enables the solving of additional proteins with Δsocial 

> 0, the extent of MR’s benefits depends on the type of proteins it makes possible to solve. 

MR’s impact therefore hinges on two factors: (i) the availability and composition of prior 

data—specifically, which proteins in bright clusters had already been solved and which remained 

unsolved at the time of MR’s introduction and (ii) whether the scientists’ private Δ values diverge 

from the socially optimal values. 

 
1 In Section 3, I provide a more complete explanation of MR and my empirical design of bright clusters. 
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2.3 Benchmark Case without Distortions 

In a world without distortions, scientists’ objective function implies that they prioritize 

proteins in descending order of Δ until all proteins with Δ > 0 have been solved. 

This has key implications for the composition of bright clusters. Prior to MR, bright clusters 

must have been targeted because they contained at least one protein with Δ > 0—either a highly 

important protein with a manageable cost, or a low-importance protein with a very low cost. Since 

proteins are solved in descending order of Δ, most of those with Δ > 0 were likely already targeted 

by the time MR arrives. The remaining proteins in bright clusters would be primarily those with 

Δ < 0: proteins that are either important but too costly or unimportant and not easy enough to 

justify solving. 

To understand which type of protein is more likely to remain, it is useful to consider how 

clusters are constructed. Because MR relies on sequence similarity to previously solved structures, 

I define clusters based on shared sequence similarity to identify proteins eligible for MR. Since 

sequence is a strong predictor of technical difficulty, and clusters are grouped based on sequence 

similarity, clusters are (i) relatively homogeneous in difficulty but (ii) could be heterogeneous in 

importance.2 Under this framework, bright clusters can be divided into two types: 
 

1. High-cost bright clusters, composed of difficult proteins with varying importance. 

Before MR, only the most important proteins in these clusters would have had Δ > 0 and 

thus been solved. After MR lowers the cost of structure determination, additional proteins 

become viable—that is, their Δs turn positive. These include both previously inaccessible 

high-importance targets and less important ones that now clear the cost-benefit threshold. 
 

2. Low-cost bright clusters, composed of easy proteins with varying importance. Before 

MR, high-importance proteins in these clusters would have been prioritized and solved, as 

cost was not a constraint. MR further reduces already-low costs, enabling the solving of 

remaining low-importance proteins that had not been worth the effort before. 
 

This distinction yields two predictions that can be tested empirically. If bright clusters were 

primarily high-cost—meaning they still contained important proteins left unsolved due to 

technical difficulty—then the reduction of costs from MR should unlock these important proteins, 

 
2 This assumption is empirically verified in the data. Note that while some challenging proteins are known 
to play key biological roles (e.g., membrane proteins), importance and technical difficulty are not always 
correlated. This motivates treating the two dimensions separately both conceptually and empirically. In 
Section 7, I discuss the generalizability of this assumption. 
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leading to increases in both the quantity of structures and scientific insights. Alternatively, if 

bright clusters were mostly low-cost, MR will increase quantity but yield limited scientific insights, 

as the most valuable proteins were likely already solved. 

2.4 Case with Distortions 

2.4.1 Mitigating Distortions 

In the benchmark world without distortions, proteins remaining at the time of MR’s 

introduction are those with Δ < 0. However, when scientists’ private assessments of Δ diverge 

from Δsocial, some socially valuable proteins (Δsocial > 0) may be left unsolved. MR helps mitigate 

such inefficiencies by reducing cost, making (privately) unattractive proteins newly viable. 

There may be several potential sources of inefficiency. First is a bias towards novelty: in 

reward systems that prize being first (Merton 1957), scientists may undervalue important proteins 

that are too similar to already solved ones, even if these proteins are socially valuable. Second is 

a bias towards quantity: in reward systems that value output volume, scientists may favor easy 

structures, regardless of importance (e.g., grants may require “stamp collections” of structures).3 

As a result, high-importance, high-cost proteins may be undervalued because they do not align 

with short-term publication or funding incentives. Finally, due to imperfect information, scientists 

may misjudge the expected importance and cost of solving a protein. There may be “hidden 

gems”—important proteins with Δsocial > 0—that were mistakenly overlooked. 

This yields a third empirically testable prediction. In the benchmark world without 

distortions, low-cost clusters would have already exhausted their most valuable proteins by the 

time MR was introduced. However, in the presence of frictions, even low-cost bright clusters may 

have neglected high-importance proteins. By lowering cost, MR may encourage scientists to revisit 

socially valuable proteins that were ignored due to novelty or quantity bias and to uncover hidden 

gems, generating scientific insights. 

2.4.2 Introducing Distortions 

While MR can help correct existing inefficiencies, it may also introduce new distortions. In 

addition to understanding whether MR increased the solving of high- or low-importance proteins 

in bright clusters, it is important to consider whether MR shifted the allocation of research efforts. 

 
3 For example, Azoulay, Graff Zivin, and Manso (2011) show that life science grants that emphasize short-
term evaluation cycles with predefined deliverables can lead to scientists favoring safer, incremental research. 
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Did MR lead to an overall expansion of structural biology via bright clusters? Or did it instead 

cause a reallocation of efforts away from clusters without prior structure data (i.e., “dark clusters”) 

to already-explored bright clusters? 

As Hoelzemann et al. (2024) argue, when data shines light on satisfactory—but not the 

best—option, data can discourage workers from exploring further. Generating data is costly, and 

knowledge workers may be disincentivized from doing so if others capitalize on the data without 

bearing the cost of the data creation. 

Building on this insight, I further argue that data-extrapolation technologies like MR may 

amplify this free-riding problem. MR generates spillovers that increases the value of solving 

structures in dark clusters because it reduces the cost of solving all other structures in the cluster. 

But paradoxically, this can create free-riding problems: if a scientist undertakes the cost of solving 

the first structure in a dark cluster, others can free-ride on that effort to easily solve the remaining 

structures in the cluster using MR. This can result in the under-exploration of dark clusters, even 

when they contain socially valuable targets.4 Although harder to test empirically, this mechanism 

suggests a final prediction: if MR leads to a reallocation of effort rather than a net expansion, this 

may reflect free-riding dynamics that deter exploration of dark clusters. 

2.5 Summary  

MR’s impact depends on (i) the availability and composition of prior data (bright clusters) 

and (ii) whether it corrects prior inefficiencies or introduces new distortions. While MR is socially 

valuable when it enables the solving of proteins with Δsocial > 0, the extent of this value depends 

on which proteins are unlocked. Appendix Table 1 summarizes the four predictions derived from 

this framework, guided by a simple logic: MR yields meaningful insights if it unlocks overlooked 

high-importance proteins, and more incremental contributions if it facilitates low-importance 

proteins—outcomes that hinge on the composition of prior data, specifically which proteins have 

been solved versus remain unsolved. While I focus on structural biology, this framework can be 

applied broadly to other settings where uneven data availability—shaped by past scientific effort 

and feasibility—guides the direction of innovation. I further discuss the generalizability of this 

framework beyond structural biology in Section 7. 

 
4 Not all reallocation of scientific effort is inefficient. The concern arises when MR shifts effort toward 
proteins with high private Δ but low Δsocial. This can occur under free-riding dynamics since scientists 
underestimates the importance of proteins in dark clusters because they cannot internalize the full 
downstream spillovers of being the first to explore dark clusters. 
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3.  Empirical Setting 

An ideal empirical setting needs three ingredients: (i) an observable project landscape, where 

one can track which projects get explored versus unexplored, as well as a measure of similarity 

between potential projects, (ii) the arrival of a data-extrapolation technology, and (iii) specifically, 

the differential arrival of the technology, such that it only arrives in some parts (treated) but not 

other parts of the setting (control). In this section, I first introduce the setting of structural biology 

and its scientific importance. I then describe the empirical features of structural biology that make 

it an attractive setting for this paper. 

3.1  Structural Biology: The Study of Proteins 

Structural biology is a field that studies the 3D structures of proteins and aims to uncover 

the functional roles of proteins by elucidating their structures. As Francis Crick (who discovered 

the helical structure of DNA) remarked, “If you want to understand function, study structure” 

(Crick 1990). Since proteins are responsible for carrying out most functions in cells, insights from 

structural biology have helped with a broad range of applications, from identifying targets for new 

drugs to understanding disease progression. As one evidence of its wide-reaching impact, structural 

biology has been recognized with more than a dozen Nobel prizes. 

Structural biology has also played an important role in the fight against the coronavirus 

pandemic. As shown in Appendix Figure 1A, researchers solved the structure of the spike proteins 

on the surface of SARS-CoV-2—that is, they determined the 3D coordinates of individual atoms 

of the protein. Through this direct visualization, researchers learned how these proteins latch onto 

receptors on human cells like “a key to a lock” (Patel, Lucet, and Roy 2020), enabling the 

development of vaccines that are designed to block these proteins. 

3.2  Structural Biology as an Empirical Setting 

3.2.1 Observable Project Landscape 

In order to investigate whether a data-extrapolation technology changes the direction of 

innovation, it is important to be able to observe the entire project landscape. In most settings, 

however, researchers can only observe projects that were realized, while alternative projects that 

could have been pursued (but were not) remain invisible. An attractive feature of structural 

biology is that it provides a unique window into the project landscape. As detailed in Section 4, I 
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leverage a database of all known proteins, and I can observe which proteins structural biologists 

chose to explore versus could have explored but neglected. 

Furthermore, in most settings, it is difficult to quantify the similarity between each potential 

project. For instance, in the case of scientific publishing, measuring the distance between each 

paper is challenging; text similarity is often used, but this is an imperfect metric for measuring 

intellectual distance. In contrast, structural biology provides an objective measure (Hill and Stein 

2025a; 2025b): proteins are composed of sequences of amino acids—which are given by nature—

and proteins can be grouped based on their sequence similarity. 5  Since data-extrapolation 

technologies work by identifying similarities from one project to another, this measure of distance 

enables me to track the use of such extrapolation. 

3.2.2. Arrival of a Data-Extrapolation Technology 

Structural biologists developed various experimental techniques to reveal the atomic 

structure of proteins—or “solve” the structure. Solving a protein structure involves deep knowledge 

of biology, physics, and statistics, and this used to be—and remains—challenging. A complex 

structure could take months, even years, to solve. For instance, determining the structure of the 

ribosome (a macromolecular machine responsible for translating DNA code to produce proteins) 

took over two decades, culminating in the 2009 Nobel Prize in Chemistry (Ramakrishnan 2018). 

The dominant method of solving a structure is called X-ray crystallography,6 which proceeds 

in three main steps (Appendix Figure 1B). First, the protein sample must be produced in a specific 

way, which is to crystallize it—packing multiple copies of the protein in a well-ordered crystal 

lattice. Second, once the crystal is obtained, X-ray beams are shot at the crystal, which produces 

diffraction patterns, as electrons in the crystal diffract the X-ray. Third, using a combination of 

physical laws, statistics, and intuition, structural biologists construct a density map of electrons 

from the diffraction patterns and build up a 3D atomic model of the protein structure. I focus on 

this third step of interpreting the diffraction data. Unlike the days of Max Perutz (co-winner of 

the 1962 Nobel Prize in Chemistry) who solved the first protein structure (hemoglobin) through 

 
5 I build on the works of Hill and Stein (2025a; 2025b), who study the effect of competition in structural 
biology and cluster structures based on their sequence similarity to identify scientists engaged in “priority 
races” (i.e., competing teams that worked on structures in the same cluster, unbeknownst to each other). In 
this paper, rather than focusing on just proteins whose structures have been characterized, I look at the 
entire universe of proteins—both structurally characterized and uncharacterized—and cluster this universe 
of proteins based on their sequence similarity. 
6 In addition to X-ray crystallography, two other methods can be used to solve a structure: nuclear magnetic 
resonance spectroscopy and cryo-EM. However, crystallography is by far the most common method, as 90% 
of protein structures are solved using this method during my sample period. 
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painstaking hand-calculations, many of the steps of interpreting the diffraction data have become 

automated. 

The specific technology I examine is a software program called Phaser. Phaser was released 

in September 2003, which automates a method called molecular replacement (MR). Figure 1 shows 

the rise in the number of structures solved by MR at the Protein Data Bank, a global repository 

of all solved structures.7 One of the biggest challenges in interpreting the diffraction data is called 

the “phase problem,” a problem difficult enough that one method to solve it resulted in a Nobel 

prize.8 Prior to MR, structural biologists had to resort to time-consuming experimental methods 

to solve the phase problem,9 but MR allowed structural biologists to bypass experimental phasing. 

Instead of solving the phase problem from scratch, MR uses previously solved structures that 

share close sequence similarity to the unknown structure and use them as templates to solve the 

phase problem of the unknown structure. 

MR therefore can be viewed as a data-extrapolation method. MR operates on the empirical 

observation that sequence similarity is highly correlated with structural similarity, even though 

the causal mechanisms through which amino acid sequences determine a protein’s 3D structure (a 

process called “protein folding”) remains poorly understood. This underscores the value of data-

extrapolation technologies in advancing scientific progress in domains where theoretical 

foundations are limited. By taking advantage of this pattern, structural biologists use MR to 

import phase information from neighboring proteins that share sequence similarity, rather than 

solving the phase problem de novo.10 

 
7 The method of MR was first proposed in 1962, but MR was not put into wide practice until decades later 
due to lack of available structures, as well as lack of ready-made software programs (Doerr 2014). While 
Phaser was not the first software program to implement MR, it is the most widely-used program, as it is 
user-friendly and considered to be the most efficient (Scapin 2013). 
8 X-ray reflections have both amplitudes and phases, but the phase cannot be inferred from the diffraction 
patterns. Without knowing the phase, a model of the protein structure cannot be constructed. Max Perutz 
and John Kendrew were awarded the 1962 Nobel Prize in Chemistry, in part for their pioneering work in 
overcoming this phase problem. 
9 There are two experimental methods that solve the phase problem from scratch. These methods do not 
rely on the availability of prior solved structures, but they can require arduous experimental efforts. See 
Appendix B for more details. 
10 In November 2020, a technology that supersedes MR was introduced: the AI program AlphaFold, created 
by Google’s DeepMind team. AlphaFold can predict the structure of a protein based on purely its sequence 
of amino acids. While MR helps with specifically the phase problem of experimental structure solving, 
AlphaFold bypasses the need to conduct experiments at all. While AlphaFold’s success falls outside of the 
time period studied in this paper, I discuss potential implications in Section 7. 
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3.2.3 Differential Arrival of a Data-Extrapolation Technology 

Finally, MR arrived in some parts of structural biology but not others. As mentioned earlier, 

I observe the entire map of known proteins and the distance between each protein in terms of 

their sequence similarity. While some clusters of proteins received attention from structural 

biologists before the arrival of MR (“bright” clusters of proteins), other clusters of proteins did not 

get any attention (“dark” clusters). Since MR needs data on previously solved structures, MR can 

be applied in bright clusters but is not useful for dark clusters, so bright and dark clusters serve 

as the treatment and control groups, respectively. This paves the way for a difference-in-differences 

design, as described in Section 5. 

 

4.  Data 

To map the landscape of potential proteins that structural biologists can target, I rely on 

two main datasets: UniProt/Swiss-Prot, a database of all known proteins, and the Protein Data 

Bank, a database of all publicly available protein structures. I then cluster proteins based on their 

sequence similarity to construct the final sample. 

4.1  UniProt Knowledgebase/Swiss-Prot 

The Universal Protein Resource Knowledgebase (UniProt) is a comprehensive database of 

proteins. A protein is composed of sequence of organic compounds called amino acids. Information 

for making a protein is stored in a gene’s DNA, and by translating the DNA sequence of a gene, 

scientists can determine the protein’s existence and the sequence of amino acids that appear in 

the protein. Protein sequences in UniProt are thus sourced by translating genes from major 

genome sequence databases. 

To define the complete set of proteins at risk of being structurally characterized, I focus on 

the Swiss-Prot section of UniProt.11 Created in 1986, the Swiss-Prot database is extensively 

reviewed, maintained, and annotated by experts based on experimental results and literature 

review. As of October 2020, Swiss-Prot contains 563,552 protein entries. 

 
11  In addition to Swiss-Prot, UniProt has a database called TrEMBL, which is larger but contains 
computationally annotated proteins whose existence are largely not proven. More details are provided in 
Appendix. A.1. 
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4.2  Protein Data Bank 

Established in 1971, the Protein Data Bank (PDB) is a repository of protein structures and 

contains approximately 170,000 structures as of October 2020. Since the early 1990s, most journals 

have required authors to deposit their structures in the PDB as a requirement for publication 

(Berman et al. 2000); the PDB therefore contains the universe of all publicly available structures. 

The PDB provides detailed descriptions about each structure, as well as crosswalks to Swiss-Prot. 

4.3  Sample Construction: Clustering Proteins 

After identifying which proteins in Swiss-Prot were found to be structurally characterized in 

the PDB, the final step is to measure the distance between each protein and cluster proteins that 

share sequence similarity. I rely on MMseqs2,12 an algorithm used by both Swiss-Prot and the 

PDB to cluster similar proteins (Steinegger and Söding 2018; Hauser, Steinegger, and Söding 2016). 

Given that MR will likely be successful if the template and the target proteins share at least 30% 

sequence identity (Schmidberger et al. 2010; Phenix 2022), I chose a threshold of 30% sequence 

identity to group all proteins in Swiss-Prot into mutually exclusive clusters. I then restricted the 

sample to clusters with at least one human protein and clusters that had at least one protein 

discovered by 1998, the year before the panel begins. More details on sample construction can be 

found in Appendix A. 

 

5.   Empirical Strategy 

5.1  Main Specification 

As described in Section 3.2, since MR relies on having similar, previously solved structures 

as templates, MR can only be applied in clusters of proteins with previously solved structures (i.e., 

bright clusters) and does not work for clusters of proteins that have not yet been structurally 

characterized (i.e., dark clusters). This enables a difference-in-differences approach, where I 

estimate the following regression equation to examine the impact of MR: 
 

Yct = β0 + β1PostMRt ×Brightc+ δt + γc + εct          (1) 

 
12 MMseqs2 can be downloaded from https://github.com/soedinglab/MMseqs2. More details on MMseqs2 
are provided in Appendix A.3. 

https://github.com/soedinglab/MMseqs2
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Yct is the total number of structures that gets solved in cluster c in year t. PostMRt is an 

indicator variable that turns one after the arrival of MR in 2003, and Brightc is an indicator 

variable for bright clusters, defined as whether the cluster had at least one structure by 1998.13 δt 
are calendar year fixed effects, and γc are cluster fixed effects. β1 is the coefficient of interest and 

can be interpreted as the impact of MR on the number of solved structures. Standard errors are 

clustered at the cluster level. 

Identification relies on the parallel trends assumption: in the absence of MR, outcomes for 

bright and dark clusters would have followed similar trends, conditional on cluster and year fixed 

effects, as well as additional time-varying controls included in some specifications. In Section 6.1, 

I discuss this assumption in greater detail. 

5.2 Descriptive Statistics 

As shown in Table 1, my sample consists of 6,942 clusters, with 9% of the clusters classified 

as bright. The table summarizes several features related to the technical feasibility and biological 

importance of the proteins in the clusters at the time MR was introduced. The difficulty of solving 

a protein is determined by the protein’s physiochemical properties, including whether the protein 

has membrane regions, intrinsic disorder, and compositional bias, as well as its sequence length.14 

To assess biological importance, I use several proxies: the number of publications and drugs 

associated with a protein, whether the protein has a known biological function or disease relevance, 

and whether it is of human origin. 

In terms of levels, bright clusters were composed of proteins that were, on average, both 

easier to solve and more biologically important. For example, the average bright cluster had a 

 
13 The treatment variable, Brightc, is defined as whether the cluster had a structure by 1998 (the year before 
my panel begins) instead of 2003 (when MR arrived). If Brightc is defined using the year 2003, then the 
treatment is mechanically correlated with the outcome variable (the number of structures being solved each 
year) in the pre-period from 1999 to 2003 since the treatment is a lagged outcome of the pre-period. The 
panel was chosen to begin in 1999 because this is (i) early enough to yield at least five years of pre-period 
before the introduction of MR, but (ii) late enough that there has been some accumulation of prior solved 
structures in the PDB (6% of structures that will eventually be deposited at the PDB by 2019 had 
accumulated by 1998). 
14 Membrane proteins, which are embedded in or associated with cell membranes, tend to be flexible and 
partially hydrophobic—features that make them especially challenging to characterize structurally. Proteins 
with intrinsically disordered regions, which lack a stable three-dimensional conformation, are similarly 
difficult to solve (Slabinski et al. 2007). Compositional bias—regions of the protein with overrepresented 
subsets of amino acids—is also linked to increased difficulty (Harrison 2017). Data on these features is 
primarily drawn from Perdigão et al. (2015), with additional updates based on my own data collection. 
Further details are provided in Appendix A.5. 
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lower proportion of disordered and membrane proteins—both known to hinder structure 

determination—compared to dark clusters. Bright clusters also exhibited a higher share of proteins 

with known biological function, as well as a greater number of associated publications and drugs.  

To investigate this further, I construct composite difficulty and importance scores that range 

from 0 to 1 for each protein by averaging over the relevant features listed in Table 1. I then 

aggregated these protein-level scores to the cluster level by calculating the mean and standard 

deviation across proteins in each cluster. Appendix A.5 describes this process in more detail, and 

the resulting distributions are shown in Appendix Figure 2. 

Panel A displays the distribution of mean difficulty and importance across the 6,942 clusters. 

As in Table 1, it shows that bright clusters tend to include proteins that are both easier and more 

important. Panel B shows the distribution of the within-cluster standard deviation. Clusters show 

relatively little variation in difficulty (average SD = 0.01) but greater variation in importance 

(average SD = 0.17). This pattern follows from how clusters were constructed. As described in 

Section 4.3, clusters were constructed using sequence similarity because MR operates across 

proteins with similar amino acid sequences. Since sequence determines a protein’s physicochemical 

properties, they are correlated with technical feasibility. As a result, proteins within a cluster are 

likely to share difficulty but may still vary in importance.15,16  

These descriptive patterns underscore several points. First, the fact that bright clusters are 

easier and more important is consistent with the framework in which scientists prioritize proteins 

with the highest Δ. Second, while some important proteins are also known to be challenging to 

solve, importance and feasibility are not always correlated,17 which will allow me to examine how 

scientists respond to cost reductions across proteins that differ in importance but are similar in 

difficulty. Finally, while these differences in levels do not threaten the difference-in-differences 

strategy—so long as pre-trends are parallel—I revisit these characteristics in a robustness analysis. 

 
15 While sequence similarity can correlate with both structural and functional features, it more directly 
reflects a protein’s physicochemical properties, which influence technical feasibility. In contrast, biological 
importance is shaped by broader functional context and can vary substantially even among proteins with 
similar sequences. (Hegyi and Gerstein 1999; Pearson 2013). As a result, clusters formed based on sequence 
similarity are likely to be more homogeneous in difficulty, but more heterogeneous in importance. 
16 Part of the higher within-cluster variation in importance may also reflect measurement limitations. While 
the importance features are conceptually meaningful, they likely contain more measurement error than the 
difficulty features, since observed importance partly reflects accumulated research attention in addition to 
intrinsic scientific value. This measurement noise could inflate within-cluster variance. 
17 For example, membrane proteins are known to be both important and challenging to solve. In contrast, 
lysozyme plays a key role in the immune system but is relatively easy to solve—factors that contributed to 
it being one of the earliest structures deposited in the PDB (Chayen and Saridakis 2001). 
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In Appendix A.6, I construct and control for a “predicted brightness” measure based on pre-period 

traits related to both feasibility and importance. 

 

6.  Results 

6.1  Impact of MR on the Quantity of Innovation  

I begin by examining how MR impacted the number of solved structures. As shown in Table 

2, bright clusters got brighter (i.e., received more structures) after MR, relative to dark clusters. 

The outcome is the total number of solved structures in a cluster each year. Columns 1-2 report 

the outcome after Log(+1) transformation,18 while Columns 3-4 report the results in levels (scaled 

by the standard deviation). As reported in Column 1, bright clusters experienced a 7% increase 

in the number of solved structures after the arrival of MR, relative to dark clusters. Results in 

levels also indicate that bright clusters got brighter. These clusters received an increase of 0.73 

annual number of structures after the arrival of MR, which translates to a 29.8% increase relative 

to the baseline standard deviation of 2.45. 

I conduct several analyses to ensure that these results are being driven by MR. First, one 

concern is that bright clusters may be getting more structures not necessarily due to MR but 

because it is also getting increasingly larger (i.e., more protein sequences are being discovered) or 

older. In Columns 2 and 4, I additionally control for time-varying cluster size and cluster age while 

estimating Equation 1. 

Second, the impact of MR should be limited to structures that were actually solved using 

the method. If bright clusters exhibit increases in both MR-solved and non-MR-solved structures, 

this raises concerns that factors unrelated to MR may be causing bright clusters to get brighter. 

In Appendix Table 3, I confirm that MR only increased the number of MR-solved structures. 

Third, since MR needs just one previously solved structure in order to work, the impact of 

MR should be stronger when comparing dark clusters versus bright clusters with a single 

previously solved structure, and weaker when comparing bright clusters with a single structure 

versus bright clusters with multiple structures. Appendix Table 4 shows this result. I split the 

bright clusters into whether they had just a single or multiple previously solved structures. I then 

compare the impact of MR, comparing dark versus bright clusters with just a single structure 

 
18 In Appendix Table 2, I provide a robustness analysis using inverse hyperbolic sine transformation. Results 
remain similar. 
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(Column 2) and comparing bright clusters with just a single structure versus multiple structures 

(Column 3). The impact of MR is stronger in Column 2 relative to Column 3. 

Fourth, to asses pre-period trends, I show an event studies version of Equation 1, replacing 

the single PostMRt indicator with indicators for every year before and after the introduction of 

MR. Figure 2 plots the dynamic effects of MR on the number of solved structures. In both Panels 

A (Log(+1) transformation) and B (levels), there appears to be no difference in pre-trends between 

bright and dark clusters. Moreover, the impact of MR is sustained over the entire sample period: 

bright clusters got brighter and brighter. 

In the Appendix, I provide additional robustness analyses. While the event studies show no 

evidence of pre-trends, one might still worry that bright and dark clusters followed different 

trajectories for reasons unrelated to MR. To address this, in Appendix A.6, I construct a predicted 

brightness measure to directly control for ex-ante traits. Finally, Appendix A.7 presents 

alternative specifications, where I vary the cluster construction. 

6.2  Impact of MR on Functional Insight 

MR decreased the cost of solving structures in bright clusters, and, perhaps unsurprisingly, 

increased the volume of structures in those areas. The key question is whether this increase in 

structures led to novel biological understanding. Structural biologists do not solve structures for 

simply the sake of solving them; they elucidate structures with the hope of learning a new 

functional insight. The editors of Nature Structural Biology advocated in their inaugural issue, 

“[T]he static image of the molecule is rarely an end in itself, but rather a beginning of 

comprehension” (Nature Structural Biology 1994). Through additional biochemistry or cell biology 

experiments, structural biologists link a protein’s structure to its potential function to understand 

the role the protein plays in various biological processes (Cassiday 2014). 

To evaluate whether MR contributed to new biological insights, I examine three outcomes. 

First, did the structure lead to a publication? Structures deposited in the PDB without an 

accompanying publication to explain their significance likely contributed only modestly to 

advancing biological understanding. As a prominent researcher at Yale once declared, “The fact 

is that protein structures come alive intellectually only when they are connected with [other data] 

indicating what they do” (Moore 2007).19 Second, was the structure cited by Swiss-Prot? The 

 
19 There could be several reasons why some structures do not have accompanying publications. A “stamp 
collection” of structures may be required to win grants from funding agencies. Some of these structures are 
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Swiss-Prot database contains extensive annotations about a protein’s function and provides 

references behind each annotation. Importantly, the references are added manually by experts 

who follow well-defined curation protocols, undergo quality checks, and are updated as new data 

becomes available. I track whether the publication associated with the structure was included as 

a reference under Swiss-Prot’s functional annotation section. Finally, I assess whether the 

structure was cited by a patent, under the assumption that it must have generated sufficient 

functional insight to enable downstream commercial application. I leverage data from Marx and 

Fuegi (2020) on patent citations to scientific articles to identify structures with papers that were 

cited by at least one patent within five years of publication. 

I find that bright clusters disproportionately received more structures that did not reveal 

functional insights after MR. As shown in Table 3, bright clusters received 8% more unpublished 

structures, which have no accompanying articles that describe their function (Column 1). In 

contrast, bright clusters experienced a marginal decrease in the number of structures that were 

cited by a patent (Column 4), and there were no differences between bright and dark clusters in 

the number of structures that were cited by Swiss-Prot (Column 6)—which are the set of 

structures that are the most likely to have yielded functional insights. 

Complementing these analyses, I explored how the scientific community valued MR-enabled 

structures by analyzing their publication impact. Specifically, for each structure’s publication, I 

tracked their citation impact (Table 4) and journal prestige (Appendix Table 6), 20  and 

decomposed the number of solved structures into terciles based on each measure. I find that bright 

clusters especially received more structures with less publication impact. These patterns suggest 

that while MR increased structure output, it did not lead to work that the broader community 

deemed especially impactful. 

 
Ease vs. Importance 

 To interpret these results, I return to the conceptual framework, where scientists choose 

proteins that maximize the difference between importance and cost (Δ). Absent frictions, scientists 

would prioritize proteins in descending order of Δ until only those with negative Δs remain. This 

implies that bright clusters became bright because they contained at least one protein with a 

 
also from structural genomics consortiums, whose goals are to catalogue as many types of structures as 
possible without necessarily explicating them (Petsko 2007). 
20 I linked each structure’s primary publication in the PDB to PubMed records and obtained citation data 
from OpenAlex (measured as the mean annual citations received within the first five years after publication), 
along with the journal’s impact factor. 
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positive Δ, and by the time MR was introduced, the remaining proteins in those clusters were 

either (i) important but prohibitively costly or (ii) unimportant and not low-cost enough to justify 

solving. If the former, MR might unlock valuable proteins by reducing cost; if the latter, it would 

simply enable expansion into lower-value proteins. 

To assess which force dominates, I classify clusters by technical difficulty using the 

composite score from Section 5.2, defining “easy” clusters as those below the median and “hard” 

clusters as those above the median. I then re-estimate the main regression separately by difficulty 

group. Because clusters are formed by sequence similarity, which strongly predicts difficulty, this 

classification allows me to condition on technical difficulty and examine whether MR’s effects vary. 

Specifically, the type of proteins remaining when MR arrived likely differed by cluster difficulty. 

In hard clusters, some important proteins may have remained unsolved due to high cost. In easy 

clusters, high-value targets were likely already solved since cost is not a constraint, leaving mainly 

low-importance proteins. 

Appendix Table 5 reports the results. First, easy bright clusters were disproportionately 

represented: among bright clusters, 72% were easy, low-cost clusters, while 28% were difficult, 

high-cost clusters. This prevalence of easy bright clusters helps explain why MR did not yield 

substantial functional insights in the main results. Second, even when splitting clusters into hard 

and easy clusters, the pattern of MR leading to limited insight largely persists. In hard clusters, 

MR appears to have unlocked some previously inaccessible proteins that were at least 

publishable—but these structures offered limited downstream value in terms of functional 

annotations or patent citations.21 In easy clusters, the increase was driven mainly by proteins that 

never led to published findings—consistent with MR enabling the solving of low-cost, low-

importance proteins, after more valuable ones were already exhausted. 

Taken together, these results suggest that MR lowered technical barriers to solving proteins 

(including challenging ones in hard clusters), but the resulting insights from these newly solved 

proteins were modest. Furthermore, there is limited evidence that scientists systematically 

overlooked valuable proteins prior to MR due to frictions such as bias towards novelty or quantity. 

If such distortions had shaped early solving decisions, we would expect MR—by lowering costs—

to reveal important-but-overlooked proteins, leading to gains in functional insight or citation 

impact. Such patterns, however, do not appear in the data. 

 
21 The fact that hard clusters did not yield dramatically important insights suggests that MR may have 
lowered costs just enough to make moderate-importance proteins viable, while truly high-importance, high-
cost proteins remained out of reach (Δ stayed negative). 
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6.3 Impact of MR on Technical Utility and Execution Quality 

The conceptual framework highlights that MR can be socially valuable if it expands the set 

of proteins that are worth solving by shifting proteins with previously negative Δ into the viable 

range. The extent of the benefits depends on whether these proteins are high-importance or low-

importance proteins. While MR appears to have primarily enabled the solving of low-importance 

proteins in bright clusters—and did not generate novel biological insights—the resulting increase 

in incremental structures can still be valuable. To assess this possibility, I examine two sets of 

measures: technical utility and execution quality. 

 
Technical Utility 

The PDB provides a unique measure called “mentions,” which captures whether a structure 

is referenced in the text of downstream articles, even if not formally cited.22 Mentions likely 

capture technical use cases, such as when structures are incorporated into methods, figures, or 

analyses. As shown in Table 4, MR did not significantly increase the number of highly cited 

structures, but it did disproportionately raise the number of structures that were frequently 

mentioned in downstream research. This pattern suggests that MR helped increase the supply of 

structures, though not broadly influential in terms of citations, were still actively referenced and 

used by downstream researchers as technical inputs. Similarly, Appendix Table 6 shows that MR 

especially increased the number of structures published in lower impact journals and specialist 

structural biology journals, further suggesting that these contributions were technically valuable 

within the structural biology community, even if they were not recognized as high-impact by 

broader audiences. 

 
Execution Quality 

Another measure of quality to consider is execution. The quality of a scientific contribution 

reflects not only the significance of the problem it addresses, but also the rigor with which it is 

executed. In the context of structural biology, this refers to the degree to which a structure is 

carefully and meticulously constructed. In particular, I take advantage of measures provided in 

the PDB called the R-free and resolution. These are objective metrics used by the structural 

 
22 These measures are available in Protein Data Bank in Europe (PDBe). The PDB consists of a consortium 
of global partners, such as PDBe and RCSB PDB (the US branch). While each partner maintains its own 
website, they share the same underlying global data. 
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biology community to assess the technical execution—specifically, the precision and accuracy—of 

the structures (Kleywegt and Jones 1997). 

Resolution captures precision, or the level of structural detail. Appendix Figure 1C shows 

an example of a protein (tyrosine 103 from myoglobin) at different resolutions, from a poor 

resolution where only general contours are visible to a resolution where individual atoms can be 

plotted. Resolution depends on how well-ordered the protein crystals are, which researchers can 

influence by optimizing crystallization conditions. Highly ordered crystals—where proteins are 

tightly packed and uniformly aligned—produce diffraction patterns with finer details. 

The R-free refers to accuracy or goodness-of-fit: how well the model of the protein structure 

matches the observed experimental data. As discussed in Section 3.2, structural biologists build 

atomic models of their protein structure, simulate diffraction patterns based on the models, and 

compare the simulated diffractions to the experimentally observed patterns. The R-free improves 

as researchers refine their models to better align with the experimental data. 

With these measures, I investigate the impact of MR on execution in Table 5. Columns 1-3 

decompose the total number of structures solved in a cluster into terciles based on the structure’s 

resolution values, while Columns 4-6 similarly report results using the R-free of the structures.23 

A clear pattern emerges: bright clusters especially received well-executed structures. For resolution, 

there was no difference between bright and dark clusters in the number of structures that were 

solved in the bottom tercile. In contrast, bright clusters received 9% more structures that were 

solved in the top tercile, relative to dark clusters. Likewise, for R-free, bright clustered received 

just 4% more structures from the bottom tercile, but 9% more structures from the top tercile. 

One interpretation of these results is that, in the absence of strong biological insights, 

scientists may have emphasized technical rigor to make their work more publishable. Indeed, well-

executed structures are particularly useful for drug development, which require precision, as well 

as for serving as high-quality training data for machine learning applications. These findings 

suggest that MR expanded the set of solvable structures in ways that supported downstream 

research, even if its impact was more incremental than transformative. 

 
23 For both resolution and R-free, lower values indicate higher quality. I construct terciles such that that 
higher terciles correspond to higher quality. 
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6.4 Did MR Crowd-Out the Exploration of Dark Clusters? 

 In addition to investigating whether MR unlocked primarily high- or low-importance among 

bright clusters, a central question is whether this increase in bright clusters came at the expense 

of exploring dark clusters. The difference-in-differences approach is limited to estimating only the 

relative increase in solved structures between bright and dark clusters. This relative increase can 

mean either an overall increase in structural biology research via bright clusters or a reallocation 

of innovative efforts from dark to bright clusters. While I cannot separate this out perfectly, I 

conduct several suggestive analyses. 
 

Principal Investigators 

 One way to assess whether MR caused an overall increase or a reallocation is to investigate 

whether MR attracted new entrants. This requires identifying the principal investigator (PI) 

responsible for each structure. However, the PDB does not provide author identifiers and only 

reports the last names and the initial of first names of authors, which makes it difficult to 

distinguish between PIs, especially those with common last names. To address this challenge, I 

relied on Author-ity (Torvik and Smalheiser 2021) and MapAffil datasets (Torvik 2021), which 

provide disambiguated author IDs and standardized affiliations for articles indexed in PubMed, 

the leading database of life science publications. I used a combination of matching heuristics and 

extensive manual cleaning to link PIs to PDB structures, as detailed in Appendix A.8. 

After obtaining the author IDs, I constructed three measures. First, the PI was classified as 

being from an elite institution in a given year if their affiliation appeared in the QS World 

University Rankings for Life Sciences and Medicine. 24 Second, as an alternative measure of 

pedigree, I tracked the cumulative number of citations the PI had accrued each year. Third, I 

assessed the PI’s prior experience in structural biology each year by calculating the cumulative 

share of structural biology–related keywords in their publication history.25 This distinguishes PIs 

who are specialists in structural biology (those whose publications are primarily related to 

structural biology) versus PIs whose involvement in structural biology is only peripheral. 

 
24 I applied the 2023 QS World University Rankings, as the ranking system was first introduced in 2004 
and is not available for the earlier part of my sample period. One limitation of this measure is that it 
excludes elite non-university research institutions. 
25 PubMed’s curators annotate every publication with standardized keywords known as MeSH (Medical 
Subject Headings) terms. A MeSH term was classified as structural biology–related if it fell within the top 
5% of MeSH terms that appear the most frequently in PDB publications. For each year in a PI’s publication 
history, I compiled all MeSH terms appearing across their publications and calculated the share 
corresponding to structural biology, providing a year-specific measure of structural biology specialization. 



25 
 

 Table 6 reports the results. While there is no significant difference between bright and dark 

clusters in the number of structures solved by PIs from elite institutions, bright clusters saw a 

greater increase in structures contributed by non-elite PIs. Similar patterns hold when pedigree is 

measured using citations. Furthermore, bright clusters experienced a disproportionate increase in 

structures from PIs with less specialization in structural biology. 

These patterns point to the possibility that MR may have had a democratizing effect. In a 

scientific system that rewards priority, elite PIs would have been the most likely to pursue novel 

dark clusters prior to MR. However, there is no evidence that their activity in bright clusters 

increased after MR, making a reallocation of effort from dark to bright clusters less likely. Similarly, 

PIs whose research agendas were not focused on structural biology had limited involvement in the 

field beforehand, suggesting that their post-MR activity reflects entry rather than reallocation. 

Overall, MR appears to have lowered the entry cost into bright clusters and attracted new 

participants to structural biology, rather than diverting effort away from dark clusters. 
 

Free-Riding 

Finally, as outlined by the conceptual framework, MR has the potential to introduce new 

distortions that could discourage research in dark clusters. MR creates positive spillovers by 

lowering the cost of solving additional structures within a cluster, but this very feature can 

discourage initial exploration. Solving the first structure in a dark cluster enables others to more 

easily solve related proteins using MR, potentially creating free-riding concerns. As a result, 

scientists may underinvest in dark clusters—even when they contain socially valuable targets—

because the initial costs are high while the private returns are limited. 

While I cannot measure free-riding directly, suggestive evidence indicates that such concerns 

may be limited. For 75% of MR-solved structures, I can identify the prior template structure used 

and determine whether the template originated from within the same lab or from a different one. 

Notably, a substantial share (45%) of structures relied on templates from within the same lab. 

Furthermore, as shown in Appendix Table 9, using a template from within the same lab is 

associated with a five-year reduction in the time required to solve the subsequent structure, 

compared to relying on templates from a different lab. These patterns suggest that labs may be 

able to internalize the benefits of solving a structure and rapidly make use of the structure data 

they generate. One possible explanation is that, even when structure data is made publicly 

available, competing labs may face difficulties in using it immediately due to limited familiarity 



26 
 

with the template protein. Importantly, the scientific community’s emphasis on priority may 

provide additional incentives to initiate work in dark clusters, mitigating the risk of free-riding. 

 

7.  Discussion 

Using the setting of structural biology—which offers a unique window into the full project 

landscape—I study the introduction of a data-extrapolation tool, MR, which facilitates structure 

determination by leveraging data on prior structures. MR reduced the cost of solving proteins in 

data-rich (bright) clusters, sparking an increase in the quantity of structures. While this did not 

translate into a corresponding increase in functional insights, the additional structures served as 

technical inputs to downstream research, were often well-executed, and attracted new entrants to 

the field. 

Broadly, these findings highlight that data-extrapolation technologies like MR operate by 

lowering costs in nearby areas where data is available. Whether this yields transformative or 

incremental impact depends on where and why the data exists—that is, which problems had 

already been explored and what remains tractable once extrapolation becomes possible. Much of 

the prior literature on data-driven tools assumes that data simply exists and focuses on how 

algorithms perform given those data. In contrast, I emphasize that data is not randomly 

distributed. The idea landscape is often conceptualized as “rugged,” with peaks and valleys of 

opportunities (Kauffman 1993; Stuart and Podolny 1996; Levinthal 1997; Fleming and Sorenson 

2004). The data used to navigate this terrain is unevenly generated, accumulating in areas that 

were important or historically tractable. Extrapolation technologies inherit this uneven coverage 

and may reinforce existing research trajectories, accelerating discovery where data is abundant, 

while offering limited traction in data-scare regions. 

To assess whether these findings extend beyond structural biology, it is useful to consider 

three field-specific features that shaped MR’s impact. First is the joint distribution of scientific 

importance and technical difficulty. In structural biology, these two attributes are imperfectly 

correlated: important proteins are not necessarily hard to solve, and vice versa. This implies the 

presence of high-importance, low-cost proteins that would have been solved before MR arrived 

(e.g., lysozyme), leaving fewer important targets for MR to unlock. In contrast, in settings where 

importance and difficulty are more strongly correlated—such that the most important projects 

are also the most technically challenging—many high-value targets would remain unsolved due to 
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prohibitive costs. In such cases, a cost-reducing tool like MR could have the potential to unlock 

important discoveries, making its contributions more substantial. 

Second, this setting exhibits limited evidence of the frictions outlined in the conceptual 

framework. My results do not suggest that MR led to the solving of important-but-overlooked 

“hidden gems.” This suggests that scientists appear to have selected proteins in ways that were 

broadly consistent with their underlying Δ, and the institutional context did not seem to have 

induced distortions such as free-riding. These dynamics may not generalize to fields where 

informational frictions or incentive structures play a more distortive role. 

Third is the scope of the extrapolation enabled by MR. Like other data-extrapolation 

technologies, MR facilitated progress in a domain with underdeveloped theory (i.e., the theory of 

protein folding remains poorly understood) by borrowing insights from existing data. However, 

MR enables only limited extrapolation across closely related proteins, operating within narrowly 

defined technical neighborhoods. Data-extrapolation tools that can span more disparate domains 

may yield larger cost reductions and catalyze higher-impact breakthroughs, from increasing 

workplace productivity (Brynjolfsson, Li, and Raymond 2025) to spurring novel materials 

discovery (Toner-Rodgers 2024). 

While MR operates within narrower technical bounds, the framework developed in this paper 

can help interpret the effects of more expansive data-extrapolation technologies. A timely example 

from structural biology is AlphaFold. In 2020, Google’s DeepMind team cracked a 50-year-old 

grand challenge in biology: to predict how a protein folds into its 3D structure from purely its 

sequence of amino acids. While MR helps with only one part of experimental structure solving, 

DeepMind’s AlphaFold algorithm bypasses the need for experiments at all. Celebrated as one of 

the most significant applications of AI, the DeepMind team was awarded the Nobel Prize in 2024. 

Despite its breakthrough, however, AlphaFold also serves as a reminder of the limitations 

of data-extrapolation technologies. DeepMind’s claim that AlphaFold has produced enough 

structures to cover the “entire protein universe” (Walsh 2022) must be qualified with an important 

caveat: AlphaFold is limited by its training data, the PDB, and can only populate the protein 

structural space based on analogies to known PDB structures. In particular, protein structures 

often change in the presence of small-molecule drugs, yet the PDB contains limited data on drug-

bound complexes, making it difficult for AlphaFold to model such interaction (Callaway 2022).26 

 
26 Lou and Wu (2021) have found that AI is less useful for developing drugs that are radically novel and 
have no known mechanisms of actions. In addition, a recent paper investigates how AlphaFold changed the 
organizational structure of academic labs in computational biology (Cavalli 2022). 
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Facing these data limitations, a consortium of pharmaceutical firms announced in 2025 that 

they plan to build their own version of AlphaFold, trained on their internal database of proprietary 

structures (Callaway 2025). This announcement highlights the free-riding dynamics discussed in 

this paper. The PDB, built over decades by academic scientists, made the data freely available to 

generate spillovers in exchange for priority. This enabled the remarkable development of 

AlphaFold, whose own source code has also been made public. In contrast, the pharmaceutical 

consortium reveals an alternative response to free-riding concerns arising from data-extrapolation 

tools: keeping data private altogether. As a result, one of the most critical applications of 

AlphaFold—drug discovery—will likely occur within private firms. 

AlphaFold therefore highlights that when assessing the impact of data-extrapolation tools, 

it is essential to consider not only where data is generated (e.g., in high- or low-value areas), but 

also who owns it. This concern is particularly salient as the frontier of AI increasingly resides in 

industry, where firms can leverage proprietary datasets for strategic advantage (Ahmed, Wahed, 

and Thompson 2023). For example, for firms that produce products and services based on data, 

early entrants may use their control over data to outcompete rivals (Bessen et al. 2022). 

While this paper focuses on how data-extrapolation technologies may shift research towards 

data-rich regions, AlphaFold illustrates another consideration for future work: underinvestment 

in theory. These tools can serve as shortcuts, allowing scientists to rely on empirical patterns over 

causal explanations, and are especially useful in domains with limited theoretical foundations. 

Overreliance on such tools, however, risks accumulating correlational knowledge without advances 

in causal understanding (Zittrain 2019; Tranchero 2023a). The physics of protein folding remains 

poorly understood, and as one scientist remarked on AlphaFold, science may be “going away from 

human-conceived theories . . . to more data-driven methods” (Samuel 2019). 

Finally, AlphaFold underscores the importance of comprehensive, exploratory data 

generation—“mapping for the sake of mapping” (Nagaraj and Stern 2020). MR may have enabled 

structures that were initially dismissed as incremental, and initiatives whose sole goals were to 

solve as many structures as possible were often criticized for lacking hypothesis-driven agenda 

(Petsko 2007; Zhuo 2023). Yet, this serves as an example of scientists’ imperfect ability to predict 

the importance of a project; data generated without immediate scientific value may later prove 

pivotal. MR’s role in increasing the number of solved structures helped lay the groundwork for 

AlphaFold by expanding the pool of training data. As data-extrapolation tools become increasingly 

central to innovation, navigating the rugged data landscape requires understanding how prior 

data generation efforts enable or constrain future discoveries. 
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Figures & Tables 

 

FIGURE 1. NUMBER OF STRUCTURES SOLVED BY MOLECULAR REPLACEMENT 

 
NOTES: This figure plots the number of X-ray crystallography structures in the Protein Data Bank that were solved by 
molecular replacement (MR) vs. non-MR methods. 
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FIGURE 2. EVENT STUDY: IMPACT OF MR ON NUMBER OF SOLVED STRUCTURES 

Panel A. Log(+1) Transformation 

 

 

 

 

 

 

 

 

 

 

 

Panel B. Levels 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
NOTES: This figure shows the impact of MR on the number of solved structures. The figure plots the coefficients and 
95% confidence intervals from estimating an event studies version of Equation 1 that replaces the pooled PostMRt 
indicator with separate indicators for every year before and after the arrival of MR. The outcome is the total annual 
number of solved structures in a cluster; Panel A reports the outcome after Log(+1) transformation, while Panel B 
reports the outcome in levels. The unit of analysis is a cluster × year, and the sample consists of 6,942 clusters, which 
translates to 145,782 cluster-years. 
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TABLE 1. SUMMARY STATISTICS 

  Bright Clusters   Dark Clusters 

 Mean SD  Mean SD 
Cluster Discovery Year 1983.5 7.7   1993.1 5.1 
Cluster Size 39.1 80.5   7.6 14.7 
Features Related to Structure Solving Difficulty      

Share of Disordered Proteins 20% 36%  38% 46% 
Share of Membrane Proteins 2% 14%  7% 25% 
Share of Proteins with Compositional Bias 1% 8%  4% 18% 
Sequence Length 512.0 1,434.9  634.8 676.0 

Features Related to Biological Importance           
Share of Human Proteins 18% 15%  36% 24% 
Share of Proteins with Known Function 67% 32%  42% 40% 
Share of Proteins with Disease Relevance 5% 12%  4% 13% 
N of Publications per Protein 6.9 10.2  4.2 8.6 
N of Approved Drugs per Protein 0.2 0.7   0.1 0.5 

N of Structures Solved per Year 1.3 3.7   0.1 0.5 
N of Clusters 653   6,289 

 
 
NOTES: This table provides the summary characteristics of clusters when MR was introduced in 2003. The sample 
consists of 6,942 clusters, of which 653 are classified as “bright” (i.e., had at least one structure by 1998) and 6,289 are 
classified as “dark.” Cluster discovery year is the earliest recorded existence of a protein in the cluster, based on either 
its initial entry in major sequence databases (such as UniProt, the European Molecular Biology Laboratory database, 
and the DNA Data Bank of Japan) or its earliest mention in a publication, as documented by UniProt. Proteins are 
categorized as disordered, membrane, or compositionally biased when at least a quarter of their amino acid sequence is 
associated with these properties. Information on publications, functional annotation, and disease relevance as of 2003 
was parsed from UniProt, while drug-related information was obtained from DrugBank. 
  



36 
 

TABLE 2. IMPACT OF MR ON NUMBER OF SOLVED STRUCTURES 

 
  (1) (2) (3) (4) 

 Log(+1) Log(+1) Levels Levels 
VARIABLES N of Structures N of Structures N of Structures N of Structures 
          
Post-MR × Bright 0.072*** 0.042** 0.298*** 0.223*** 

 (0.018) (0.018) (0.051) (0.042) 
          
R-squared 0.471 0.474 0.390 0.394 
Calendar year FE YES YES YES YES 
Cluster FE YES YES YES YES 
Cluster size FE NO YES NO YES 
Cluster age FE NO YES NO YES 
N of structures (mean) 0.400 0.400 0.400 0.400 
N of structures (SD) 2.450 2.450 2.450 2.450 
N of clusters 6,942 6,942 6,942 6,942 
N of cluster-years 145,782 145,782 145,782 145,782 

 
 
 
NOTES: This table reports results from estimating Equation 1 and shows the impact of MR on the number of solved 
structures. The unit of analysis is a cluster × year, and the panel spans from 1999-2019. The outcome variable is the 
total annual number of solved structures in a cluster, reported after Log(+1) transformation (Columns 1-2) or in levels 
scaled by the standard deviation (Columns 3-4). Means and standard deviations of the outcomes are reported in levels. 
The treatment variable “Bright” is defined as clusters that had at least one structure by 1998, while “Post-MR” includes 
years 2004 and onwards. All columns include calendar year and cluster fixed effects; Columns 2 and 4 additionally 
control for time-varying cluster size and cluster age. Standard errors are clustered at the cluster level. Statistical 
significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1. 
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TABLE 3. IMPACT OF MR ON FUNCTIONAL INSIGHTS 

 
  (1) (2) (3) (4) (5) (6) 

VARIABLES 

Unpublished 
Structures 

Published 
Structures 

Published 
Structures 

Not Cited by 
Patent 

Published 
Structures  
Cited by 
Patent 

Published 
Structures  
Not Fxn 

Annotated 

Published 
Structures 

Fxn 
Annotated 

             
Post-MR × Bright 0.082*** 0.041** 0.069*** -0.018* 0.041** 0.005 

 (0.008) (0.017) (0.017) (0.009) (0.017) (0.004) 
       

R-squared 0.213 0.465 0.416 0.318 0.473 0.123 
N of structures (mean) 0.0500 0.340 0.260 0.080 0.310 0.030 
N of structures (SD) 1.010 2.090 1.760 0.810 2.040 0.340 
N of clusters 6,942 6,942 6,942 6,942 6,942 6,942 
N of cluster-years 145,782 145,782 145,782 145,782 145,782 145,782 

 
 
NOTES: This table reports results from estimating Equation 1 and shows the impact of MR on the number of solved 
structures by whether the structure elucidated functional insights. The unit of analysis is a cluster × year, and the 
panel spans from 1999-2019. The outcomes of all columns are the annual number of solved structures in a cluster, with 
Log(+1) transformation. Means and standard deviations of the outcomes are reported in levels. Columns 1 and 2 parallel 
the outcome in Column 1 of Table 2 but decompose the number of solved structures by whether they were cited in a 
scientific article. Columns 3 and 4 decompose the number of solved structures by whether they were cited by a patent 
within 5 years of publication. Columns 5 and 6 decompose the number of solved structures by whether they were cited 
by the functional summary section of Swiss-Prot as of January 2024. The treatment variable “Bright” is defined as 
clusters that had at least one structure by 1998, while “Post-MR” includes years 2004 and onwards. All columns include 
calendar-year and cluster fixed effects. Standard errors are clustered at the cluster level. Statistical significance is 
indicated as: *** p<0.01, ** p<0.05, * p<0.1.



 
 

 

TABLE 4. IMPACT OF MR ON CITATIONS AND MENTIONS 

  (1) (2) (3)   (4) (5) 

 Published Structures  
Citations 

 Published Structures 
Mentions 

VARIABLES Bottom 
Tercile 

Middle 
Tercile 

Top 
Tercile 

 Below 
Median 

Above 
Median 

             
Post-MR × Bright 0.046*** 0.033*** 0.016  0.025* 0.059*** 

 (0.012) (0.012) (0.010)  (0.015) (0.012) 
       

R-squared 0.363 0.309 0.332  0.427 0.385 
N of structures (mean) 0.110 0.110 0.120  0.190 0.150 
N of structures (SD) 0.900 0.870 1.190  1.640 0.800 
N of clusters 6,942 6,942 6,942  6,942 6,942 
N of cluster-years 145,782 145,782 145,782   145,782 145,782 

 
 
NOTES: This table reports results from estimating Equation 1 and shows the impact of MR on the number of solved 
structures at different levels of citations and mentions. A structure’s citation impact is measured as the mean annual 
number of citations within 5 years of publication. In addition to being formerly cited, a structure can be “mentioned” 
in the text of downstream articles; a structure’s mention impact is measured as the mean annual number of mentions 
within 5 years of publication. The unit of analysis is a cluster × year. The outcomes of all columns are the annual 
number of solved structures in a cluster, with Log(+1) transformation. Means and standard deviations of the outcomes 
are reported in levels. Columns 1-3 parallel Column 1 in Table 2 but decompose the outcome into the number of solved 
structures by terciles of citation impact. Columns 4 and 5 decompose the number of solved structures by whether they 
fall below or above the median level of mentions. The treatment variable “Bright” is defined as clusters that had at 
least one structure by 1998, while “Post-MR” includes years 2004 and onwards. All columns include calendar-year and 
cluster fixed effects. Standard errors are clustered at the cluster level. Statistical significance is indicated as: *** p<0.01, 
** p<0.05, * p<0.1.
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TABLE 5. IMPACT OF MR ON EXECUTION 

 
  (1) (2) (3) (4) (5) (6) 

VARIABLES 
Resolution 

Bottom Tercile 
Resolution 

Middle Tercile 
Resolution 
Top Tercile 

R-Free  
Bottom Tercile 

R-Free 
Middle Tercile 

R-Free 
Top Tercile 

              
Post-MR × Bright 0.009 0.072*** 0.092*** 0.043*** 0.067*** 0.089*** 

 (0.011) (0.012) (0.012) (0.011) (0.012) (0.012) 
       

R-squared 0.366 0.404 0.423 0.376 0.394 0.420 
N of structures (mean) 0.130 0.130 0.110 0.120 0.120 0.110 
N of structures (SD) 0.700 0.940 1.460 0.800 1.060 1.060 
N of clusters 6,942 6,942 6,942 6,942 6,942 6,942 
N of cluster-years 145,782 145,782 145,782 145,782 145,782 145,782 

 
 
 
 
NOTES: This table reports results from estimating Equation 1 and shows the impact of MR on the number of solved structures at different terciles of execution level (a structure’s 
level of execution can be defined in terms of resolution and R-free values). The unit of analysis is a cluster × year, and the panel spans from 1999-2019. The outcomes of all columns 
are the annual number of solved structures in a cluster, with Log(+1) transformation. Means and standard deviations of the outcomes are reported in levels. Columns 1-3 parallel 
Column 1 in Table 2 but decompose the outcome into the number of solved structures by terciles based on their resolution. Columns 4-6 similarly decompose the number of solved 
structures by terciles based on their R-free values. For both resolution and R-free, lower values indicate higher quality; I construct terciles such that that higher terciles correspond 
to higher quality. The treatment variable “Bright” is defined as clusters that had at least one structure by 1998, while “Post-MR” includes years 2004 and onwards. All columns 
include calendar-year and cluster fixed effects. Standard errors are clustered at the cluster level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1.  
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TABLE 6. IMPACT OF MR BY THE CHARACTERISTICS OF THE PRINCIPAL INVESTIGATOR 

  
 (1) (2)  (3) (4) (5)  (6) (7) (8) 

  Pedigree  Prior Structural Biology Experience 

  Affiliation  Prior N of Citations  Share of Structural Biology Keywords 
in Prior Papers 

VARIABLES   
Not  

Top 20 Top 20  Bottom 
Tercile 

Middle 
Tercile 

Top 
Tercile   

Bottom 
Tercile 

Middle 
Tercile 

Top 
Tercile 

                   
Post-MR × Bright  0.073*** 0.006  0.050*** 0.053*** 0.026**  0.058*** 0.047*** 0.018* 

  (0.016) (0.006)  (0.013) (0.012) (0.012)  (0.015) (0.012) (0.010) 
            

R-squared   0.448 0.226   0.392 0.322 0.317   0.445 0.313 0.267 
N of structures (mean)   0.250 0.050   0.120 0.120 0.110   0.140 0.120 0.090 
N of structures (SD)  1.740 1.000  0.970 1.500 0.840  1.140 1.240 1.060 
N of clusters  6,942 6,942  6,942 6,942 6,942  6,942 6,942 6,942 
N of cluster-years   124,956 124,956   124,956 124,956 124,956   124,956 124,956 124,956 

 

NOTES: This table reports results from estimating Equation 1 and shows the impact of MR on the number of solved structures, decomposed by the characteristics of the Principal 
Investigator (PI). The unit of analysis is a cluster × year, and the panel spans from 1999-2016, ending in 2016 due to data availability. The outcomes of all columns are the annual 
number of solved structures in a cluster, with Log(+1) transformation. Means and standard deviations of the outcomes are reported in levels. Columns 1–2 parallel Column 1 of 
Table 2 but distinguish between number of structures solved by PIs affiliated with institutions ranked in the top 20 of the QS World University Rankings and those at institutions 
outside the top 20. Columns 3–5 decompose the number of solved structures by terciles of the PI’s prior total citation count. Columns 6–8 decompose the number of solved structures 
by the PI’s prior structural biology experience, using terciles based on the share of structural biology-related MeSH keywords in the PI’s publication history in a given year. The 
treatment variable “Bright” is defined as clusters that had at least one structure by 1998, while “Post-MR” includes years 2004 and onwards. All columns include calendar-year and 
cluster fixed effects. Standard errors are clustered at the cluster level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1. 
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Appendix Figures & Tables 

 

APPENDIX FIGURE 1. STRUCTURAL BIOLOGY 

A. Structure of the SARS-CoV-2 Spike Glycoprotein 

 
 

B. Steps of Crystallography 

 
 

C. Resolution 

                              
 
NOTES: Panel A shows the structure of a spike protein on the surface of the coronavirus (PDB entry 6VYB; source: 
https://www.rcsb.org/structure/6VYB). Panel B shows the three main steps of crystallography; this paper focuses on 
the automation of solving the “phase problem” that occurs during the interpretation of the diffraction data. Panel C 
shows an example of the electron density map behind the structure of tyrosine 103 from myoglobin, at three different 
resolutions; lower resolution is better and shows finer details (source: https://pdb101.rcsb.org/learn/guide-to-
understanding-pdb-data/resolution).  
  

https://www.rcsb.org/structure/6VYB
https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/resolution
https://pdb101.rcsb.org/learn/guide-to-understanding-pdb-data/resolution
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APPENDIX FIGURE 2. CLUSTER-LEVEL DISTRIBUTIONS OF DIFFICULTY AND IMPORTANCE 

Panel A. Distribution of Mean Difficulty and Importance of Proteins within Cluster 
 

i. Difficulty        ii. Importance 

 
          
Panel B. Distribution of Variation in Difficulty and Importance of Proteins within Cluster  

 
i. Difficulty        ii. Importance 

 

 

NOTES: These figures plot the distribution of cluster-level difficulty and importance scores among 6,942 clusters as of 
2003 when MR arrived. Panel A plots the mean scores of proteins within each cluster, while Panel B plots the variation 
in scores (measured by the standard deviation) of proteins within each cluster. The difficulty score of each protein is 
calculated as the average of four features: (i) the share of amino acids classified as membrane-associated, (ii) the share 
of amino acids classified as intrinsically disordered, (iii) the share of amino acids exhibiting compositional bias, and (iv) 
the percentile (scaled 0–1) of sequence length. The importance score of each protein is calculated as the average of five 
features: (i) whether the protein is associated with a disease, (ii) whether the protein has a known function, (iii) whether 
the protein is targeted by an approved drug, (iv) whether the protein is from human, and (v) the percentile (scaled 0–
1) of number of publications written about the protein. Protein-level scores are then aggregated to the cluster level by 
taking the mean and standard deviation across proteins in each cluster. 
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APPENDIX FIGURE 3. PERFORMANCE AND DISTRIBUTION OF PREDICTED BRIGHTNESS 

 

A. Performance of Lasso Logit 

 

Performance Metric Out-of-Sample 
(Cross-Validated) 

In-Sample  
(Fitted Model) 

ROC AUC 0.91 0.93 
PR AUC 0.24 0.33 
Log Loss 0.09 0.08 
N of Features Entered 143 
N of Features Selected 28 

 

 

B. Distribution of Predicted Brightness 

 
 

NOTES: This figure provides details on the performance and distribution of the predicted brightness measure. The 
predicted brightness measure was estimated using a Lasso Logit model, which predicts whether a protein was 
structurally characterized by 1998 based on pre-period biological and technical feasibility features (see Appendix A.6 
for details). Panel A reports model performance based on both out-of-sample (cross-validated) and in-sample (fitted) 
predictions, including Receiver Operating Characteristic Area Under Curve (ROC AUC), Precision-Recall Area Under 
Curve (PR AUC), and log loss. The Lasso Logit model selected 28 features out of 143 candidates. Panel B plots the 
distribution of the resulting predicted brightness by whether the protein was actually bright (i.e., had a structure by 
1998) or dark (i.e., did not have a structure by 1998). The sample consists of 42,547 proteins that were discovered as 
of 1998.  
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APPENDIX TABLE 1. SUMMARY OF CONCEPTUAL FRAMEWORK 

Case Remaining Proteins 
When MR is Introduced MR’s impact Empirically Testable 

Predictions 

Benchmark  
(no distortions or 
inefficiencies)  

Only proteins with Δ < 0 
 
In high-cost clusters: this 
includes important proteins 
that are too difficult to solve 
 
In low-cost clusters: only 
low-importance proteins left 

MR expands the set of feasible 
proteins: MR lowers cost and 
turns previously unattractive 
proteins Δ < 0 into viable 
candidates (Δ > 0). This 
includes both high-importance 
and low-importance proteins 
that now clear the threshold 

In high-cost clusters: 
biological insights generated, 
as high-importance proteins 
are unlocked by MR 
 
In low-cost clusters: limited 
insights, as only low-
importance proteins are 
remaining 

Pre-MR distortions  
(e.g., novelty bias, 
quantity bias,  
imperfect information) 

Both proteins with Δ < 0 
and some overlooked 
proteins with Δsocial > 0 

MR can correct past 
misallocation by unlocking 
important-but-neglected proteins 

Increase in biological 
insights, even in low-cost 
clusters 

Post-MR distortions  
(free-riding) -- 

Free-riding discourages the 
exploration of dark clusters, even 
if they contain socially valuable 
targets 

Reallocation of effort from 
dark to bright clusters, 
rather than an overall 
expansion 

 
NOTES: This table summarizes the four empirical predictions derived from the conceptual framework in Section 2. The 
impact of MR depends on (i) the availability and composition of prior data (bright clusters) and (ii) whether MR 
corrects prior inefficiencies or introduces new distortions. Scientists choose which proteins to solve by maximizing the 
difference between expected scientific importance and the cost of solving them: Δ = Importance – Cost. A protein is 
socially beneficial to solve if its true scientific importance exceeds its true costs: Δsocial = Social Importance − Social 
Cost. Social importance reflects the structure’s broader contribution to downstream innovation, beyond the private 
benefits to the scientist. Social cost includes both the direct cost of solving the protein and the opportunity cost of 
forgone research the scientist could have pursued instead.  
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APPENDIX TABLE 2. IMPACT OF MR ON NUMBER OF SOLVED STRUCTURES, INVERSE 
HYPERBOLIC SINE TRANSFORMATION 

 
  (1) (2) 

 IHS IHS 
VARIABLES N of Structures N of Structures 
      
Post-MR × Bright 0.084*** 0.047** 

 (0.022) (0.022) 
      
R-squared 0.464 0.468 
Calendar year FE YES YES 
Cluster FE YES YES 
Cluster size FE NO YES 
Cluster age FE NO YES 
N of structures (mean) 0.400 0.400 
N of structures (SD) 2.450 2.450 
N of clusters 6,942 6,942 
N of cluster-years 145,782 145,782 

 
 
NOTES: This table reports results from estimating Equation 1 and shows the impact of MR on the number of solved 
structures. The unit of analysis is a cluster × year, and the panel spans from 1999-2019. The outcome variable is the 
total annual number of solved structures in a cluster, reported after inverse hyperbolic sine transformation. Means and 
standard deviations of the outcomes are reported in levels. The treatment variable “Bright” is defined as clusters that 
had at least one structure by 1998, while “Post-MR” includes years 2004 and onwards. All columns include calendar 
year and cluster fixed effects; Columns 2 and 4 additionally control for time-varying cluster size and cluster age. 
Standard errors are clustered at the cluster level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1. 
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APPENDIX TABLE 3. IMPACT OF MR ON MR VS. NON-MR STRUCTURES 

 

  (1) (2) (3) 

VARIABLES 
All 

Structures 
MR 

Structures 
Non-MR 

Structures 
        
Post-MR × Bright 0.072*** 0.143*** -0.007* 

 (0.018) (0.017) (0.004) 
    

R-squared 0.471 0.475 0.102 
N of structures (mean) 0.400 0.290 0.0200 
N of structures (SD) 2.450 2.170 0.190 
N of clusters 6,942 6,942 6,942 
N of cluster-years 145,782 145,782 145,782 

 

  
NOTES: This table parallels Column 1 from Table 2. The table reports results from estimating Equation 1 and shows 
the impact of MR on the total number of solved structures (Column 1) and decomposes this into number of MR 
structures (Column 2) and non-MR structures (Column 3). All of the outcomes are Log(+1) transformed. Means and 
standard deviations of the outcomes are reported in levels. The unit of analysis is a cluster × year, and the panel spans 
from 1999-2019. The treatment variable “Bright” is defined as clusters that had at least one structure by 1998, while 
“Post-MR” includes years 2004 and onwards. All columns include calendar-year and cluster fixed effects. Standard errors 
are clustered at the cluster level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1. 
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APPENDIX TABLE 4. IMPACT OF MR, SPLITTING BRIGHT CLUSTERS 

 

  (1) (2) (3) 

 

Dark  
vs. 

All Bright Clusters 

Dark 
vs. 

Bright Clusters 
with 1 Structure 

Bright Clusters 
with 1 Structure  

vs. 
Bright Clusters 

with >1 Structures 
        
Post-MR × Bright (1 or 
more structure) 0.072*** 0.068***  

 (0.018) (0.022)  
Post-MR × Bright (more 
than 1 structure)   0.006 

   (0.034) 
    

R-squared 0.471 0.324 0.592 
N of structures (mean) 0.400 0.250 1.980 
N of structures (SD) 2.450 1.830 5.540 
N of clusters 6,942 6,549 653 
N of cluster-years 145,782 13,7529 13,713 

 

NOTES: Column 1 of this table parallels Column 1 of Table 2 and shows the impact of MR on the total number of 
solved structures in the full sample. Column 2 investigates the impact of MR on the sample of dark clusters and bright 
clusters with just 1 structure solved by 1998; the treatment variable “Bright” is defined as clusters that had just one 
structure by 1998. Column 3 investigates the impact of MR on the sample of bright clusters with 1 or more structures 
solved by 1998; the treatment variable “Bright” is defined as clusters that had more than 1 structure by 1998. All of 
the outcomes are Log(+1) transformed. Means and standard deviations of the outcomes are reported in levels. The unit 
of analysis is a cluster × year, and the panel spans from 1999-2019. All columns include calendar-year and cluster fixed 
effects. Standard errors are clustered at the cluster level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, 
* p<0.1. 
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APPENDIX TABLE 5. IMPACT OF MR ON FUNCTIONAL INSIGHTS: HARD VS. EASY CLUSTERS 

 

NOTES: This table parallels Table 3 but splits the sample by cluster-level difficulty. The difficulty score of each protein is calculated as the average of four features: 
(i) the share of amino acids classified as membrane-associated, (ii) the share of amino acids classified as intrinsically disordered, (iii) the share of amino acids 
exhibiting compositional bias, and (iv) the percentile (scaled 0–1) of sequence length. Protein-level scores are then averaged to the cluster level. Clusters with 
above-median scores are classified as “hard,” while those below the median are classified as “easy.” See Appendix A.5 for more details. 

  

  Hard Clusters   Easy Clusters 

 
(1) (2) (3) (4) (5) (6)  (7) (8) (9) (10) (11) (12) 

VARIABLES 

Unpublished 
Structures 

Published 
Structures 

Published 
Structures 
Not Cited 
by Patent 

Published 
Structures 
Cited by 
Patent 

Published 
Structures 
Not Fxn 

Annotated 

Published 
Structures 

Fxn 
Annotated 

 Unpublished 
Structures 

Published 
Structures 

Published 
Structures 
Not Cited 
by Patent 

Published 
Structures 
Cited by 
Patent 

Published 
Structures 
Not Fxn 

Annotated 

Published 
Structures 

Fxn 
Annotated 

               

Post-MR × Bright 0.057*** 0.093*** 0.117*** 0.005 0.090*** 0.006  0.092*** 0.026 0.053*** -0.024** 0.027 0.004 
 (0.014) (0.032) (0.030) (0.019) (0.032) (0.006)  (0.010) (0.02) (0.020) (0.011) (0.020) (0.006) 
              

R-squared 0.158 0.401 0.328 0.318 0.406 0.112  0.246 0.504 0.464 0.318 0.513 0.130 
N of structures (mean) 0.04 0.260 0.190 0.0700 0.240 0.0200  0.0700 0.42 0.330 0.0900 0.390 0.0400 
N of structures (SD) 1.24 1.960 1.630 0.800 1.920 0.290  0.700 2.21 1.870 0.810 2.140 0.370 
N of clusters 3,471 3,471 3,471 3,471 3,471 3,471  3,471 3,471 3,471 3,471 3,471 3,471 
    N of bright clusters 185 185 185 185 185 185  468 468 468 468 468 468 
    N of dark clusters 3,286 3,286 3,286 3,286 3,286 3,286  3,003 3,003 3,003 3,003 3,003 3,003 
N of cluster-years 72,891 72,891 72,891 72,891 72,891 72,891  72,891 72,891 72,891 72,891 72,891 72,891 
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APPENDIX TABLE 6. IMPACT OF MR ON JOURNAL IMPACT AND SPECIALIZATION 

  (1) (2) (3)     (4) (5) (6) 

 
Journal Impact Factor   Journal Specialization in Structural Biology 

VARIABLES 

Bottom 
Tercile 

Middle 
Tercile 

Top 
Tercile 

  
Low 

Specialization 
Tercile 

Moderate 
Specialization 

Tercile 

High 
Specialization 

Tercile 

                
Post-MR × Bright 0.056*** 0.021* 0.014   0.016 0.004 0.058*** 

 (0.012) (0.011) (0.010)   (0.011) (0.012) (0.010) 
         

R-squared 0.406 0.302 0.287     0.345 0.326 0.269 
N of structures (mean) 0.130 0.110 0.110     0.130 0.110 0.0900 
N of structures (SD) 1.070 0.890 1.080     1.230 0.930 0.720 
N of clusters 6,942 6,942 6,942   6,942 6,942 6,942 
N of cluster-years 145,782 145,782 145,782     145,782 145,782 145,782 

 
NOTES: This table reports results from estimating Equation 1 and shows the impact of MR on the number of solved structures at different terciles of journal impact 
and specialization. The unit of analysis is a cluster × year, and the panel spans from 1999-2019. The outcomes of all columns are the annual number of solved 
structures in a cluster, with Log(+1) transformation. Means and standard deviations of the outcomes are reported in levels. Columns 1-3 decompose the number of 
solved structures by terciles of journal impact factor. Columns 4-6 decompose the number of solved structures in journals that are high or low in structural biology 
specialization. Journal specialization is measured as the average share of structural biology–related keywords per article, calculated at the journal level over the 
sample period; journals are then classified into terciles based on this measure. The treatment variable “Bright” is defined as clusters that had at least one structure 
by 1998, while “Post-MR” includes years 2004 and onwards. All columns include calendar-year and cluster fixed effects. Standard errors are clustered at the cluster 
level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1.
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APPENDIX TABLE 7. IMPACT OF MR ON NUMBER OF SOLVED STRUCTURES WITH PREDICTED BRIGHTNESS 

A. Inclusion of Post-MR × Predicted Bright 
 

  (1) (2) (3) (4) 
 Log(+1) Log(+1) Levels Levels 

VARIABLES N of Structures N of Structures N of Structures N of Structures 
          
Post-MR × Bright 0.065*** 0.046*** 0.276*** 0.224*** 

 (0.019) (0.018) (0.052) (0.043) 

Post-MR × Predicted Bright 0.168 -0.173 0.542** -0.040 
 (0.127) (0.132) (0.251) (0.271) 
     

R-squared 0.471 0.474 0.390 0.394 
Calendar year FE YES YES YES YES 
Cluster FE YES YES YES YES 
Cluster size FE NO YES NO YES 
Cluster age FE NO YES NO YES 
N of structures (mean) 0.400 0.400 0.400 0.400 
N of structures (SD) 2.450 2.450 2.450 2.450 
N of clusters 6,942 6,942 6,942 6,942 
N of cluster-years 145,782 145,782 145,782 145,782 

 
 

B. Use of Propensity Score Matching 
 

  (1) (2) (3) (4) 
 Log(+1) Log(+1) Levels Levels 

VARIABLES N of Structures N of Structures N of Structures N of Structures 
          
Post-MR X Bright 0.055*** 0.047** 0.262*** 0.199*** 

 (0.021) (0.021) (0.053) (0.042) 
          
R-squared 0.568 0.574 0.536 0.548 
Calendar year FE YES YES YES YES 
Cluster FE YES YES YES YES 
Cluster size FE NO YES NO YES 
Cluster age FE NO YES NO YES 
N of structures (mean) 1.190 1.190 1.190 1.190 
N of structures (SD) 4.220 4.220 4.220 4.220 
N of clusters 1,306 1,306 1,306 1,306 
N of cluster-years 27,426 27,426 27,426 27,426 

 
 
NOTES: These tables parallel Table 2 and show the impact of MR on the number of solved structures, controlling for predicted brightness. 
The predicted brightness measure was estimated using a Lasso Logit model, predicting whether a protein was structurally characterized 
by 1998 based on pre-period features on biological importance and technical feasibility. These scores were then averaged to the cluster 
level (see Appendix A.6 for details). In Panel A, the “Post-MR × Predicted Bright” term was added to Equation 1. In Panel B, one-to-
one nearest-neighbor propensity score matching was implemented on the predicted brightness measure; unmatched dark clusters are 
dropped from the sample. The unit of analysis is a cluster × year, and the panel spans from 1999-2019. The outcome variable is the total 
annual number of solved structures in a cluster, reported after Log(+1) transformation (Columns 1-2) or in levels scaled by the standard 
deviation (Columns 3-4). Means and standard deviations of the outcomes are reported in levels. The treatment variable “Bright” is defined 
as clusters that had at least one structure by 1998, while “Post-MR” includes years 2004 and onwards. All columns include calendar-year 
and cluster fixed effects. Columns 2 and 4 additionally control for time-varying cluster size and cluster age. Standard errors are clustered 
at the cluster level. Statistical significance is indicated as: *** p<0.01, ** p<0.05, * p<0.1. 
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APPENDIX TABLE 8. IMPACT OF MR ON NUMBER OF SOLVED STRUCTURES: ALTERNATIVE 
SAMPLE CONSTRUCTION 

A. Unbalanced Panel 
 

  (1) (2) (3) (4) 
 Log(+1) Log(+1) Levels Levels 

VARIABLES N of Structures N of Structures N of Structures N of Structures 
          
Post-MR × Bright 0.088*** 0.046*** 0.396*** 0.279*** 

 (0.018) (0.017) (0.063) (0.051) 
          
R-squared 0.464 0.468 0.379 0.383 
Calendar year FE YES YES YES YES 
Cluster FE YES YES YES YES 
Cluster size FE NO YES NO YES 
Cluster age FE NO YES NO YES 
N of structures (mean) 0.250 0.250 0.250 0.250 
N of structures (SD) 1.970 1.970 1.970 1.970 
N of clusters 12,292 12,292 12,292 12,292 
N of cluster-years 248,677 248,677 248,677 248,677 

 

B. UniProt Similarity Families 
 

 
  (1) (2) (3) (4) 

 Log(+1) Log(+1) Levels Levels 
VARIABLES N of Structures N of Structures N of Structures N of Structures 
          
Post-MR × Bright 0.131*** 0.069*** 0.392*** 0.282*** 

 (0.020) (0.020) (0.055) (0.046) 
     

R-squared 0.542 0.545 0.453 0.457 
Calendar year FE YES YES YES YES 
Family FE YES YES YES YES 
Family size FE NO YES NO YES 
Family age FE NO YES NO YES 
N of structures (mean) 0.550 0.550 0.550 0.550 
N of structures (SD) 3.360 3.360 3.360 3.360 
N of families 6,066 6,066 6,066 6,066 
N of family-years 127,386 127,386 127,386 127,386 

 
 
 
NOTES: These tables parallel Table 2 and show the impact of MR on the number of solved structures under alternative 
sample constructions. Panel A presents results using an unbalanced panel that includes clusters discovered by 2003. 
Panel B reports results based on an alternative cluster definition using UniProt similarity families. See Appendix A.7 
for more details.
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APPENDIX TABLE 9. TIME LAG BETWEEN TEMPLATE AND DOWNSTREAM STRUCTURES  

 
  (1) (2) 

VARIABLES 

Time Lag in Structure Solving 
between Template and 
Downstream Structures 

Time Lag in Structure Solving 
between Template and 
Downstream Structures 

      
Template from Own Lab -5.044*** -4.967*** 

 (0.034) (0.033) 
   

R-squared 0.232 0.253 
Deposition year FE NO YES 
Time lag (mean) 5.230 5.230 
N of structures 69,214 69,214 

 
 
NOTES: This table reports cross-sectional regression estimates where the outcome is the number of years between the 
deposition of a template structure and the deposition of a downstream structure that reused the template via MR. The 
template and the downstream structures were identified to be from the same lab if they shared the same PI (last author). 
The sample consists of 69,214 MR-solved structures deposited at the PDB between 1999-2018 for which a template 
structure and the PI can be identified. Robust standard errors in parentheses. Statistical significance is indicated as: 
*** p<0.01, ** p<0.05, * p<0.1.  
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Appendix A. Data and Additional Analyses 

A.1 UniProt/Swiss-Prot 

The Universal Protein Resource Knowledgebase (UniProt) is a comprehensive database of 

known proteins. A protein is composed of sequence of organic compounds called amino acids. 

Information for making a protein is stored in a gene’s DNA, and by translating the DNA sequence 

of a gene, scientists can determine the protein’s existence and the sequence of amino acids that 

appear in the protein. Protein sequences in UniProt are thus sourced by translating genes from 

major genome sequence databases. 

UniProt is divided into two parts: Swiss-Prot (manually reviewed) and TrEMBL 

(computationally reviewed). Created in 1986, the Swiss-Prot database is extensively reviewed, 

maintained, and annotated by experts based on experimental results and literature review. As of 

October 2020, Swiss-Prot contains 563,552 protein entries. In contrast, TrEMBL was created in 

1996 and houses computationally annotated protein entries. Once a protein from TrEMBL 

becomes manually reviewed, it is removed from TrEMBL and enters Swiss-Prot. TrEMBL was 

established in recognition that manual curation efforts cannot keep pace with the increased 

number of protein sequences resulting from genome sequence projects and contains nearly two 

hundred million entries. 

To define the complete set of proteins at risk of being structurally characterized, I follow 

Perdigão et al. (2015)—a bioinformatics paper that descriptively mapped which proteins’ 

structures have been determined—and focus on the proteins in the Swiss-Prot database. While 

smaller than TrEMBL, using the Swiss-Prot database has several advantages. First, Swiss-Prot is 

one of the best datasets of proteins whose existence is experimentally proven (Perdigão et al. 

2015a); TrEMBL primarily contains proteins whose existence is only predicted. Second, since 

Swiss-Prot primarily includes well-characterized proteins, focusing on Swiss-Prot ensures that I 

examine proteins with a comparable baseline level of annotation and visibility to structural 

biologists, rather than unreviewed entries that may not correspond to real proteins. Third, Swiss-

Prot’s expertly curated annotation provides rich descriptions of each protein, including its function, 

clinical impact, and sequence features, which allows me to develop difficulty and importance scores 

for each protein, as well as a “predicted brightness” measure, as described in Appendix A.5 and 

A.6.  
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A.2  Linking Swiss-Prot to the Protein Data Bank 

The PDB provides crosswalks to Swiss-Prot, which can be used to observe which proteins in 

Swiss-Prot have had their structures characterized in the PDB. However, the level of the crosswalk 

between an entry in the PDB and an entry in Swiss-Prot is not a many-to-one crosswalk as one 

might expect (a many-to-one, since a protein in Swiss-Prot can have its structure solved multiple 

times), but rather a many-to-many crosswalk (i.e., a single protein structure in the PDB can also 

be linked to multiple Swiss-Prot entries). This is because in the PDB, large protein structures can 

be composed of discrete regions called “entities”; the crosswalk between the PDB and Swiss-Prot 

is at this entity level. Approximately 80% of the structures in the PDB are composed of a single 

entity, while the remaining 20% have multiple entities and therefore linked to multiple Swiss-Prot 

entries. If a single protein structure from the PDB links to multiple Swiss-Prot entries, I split the 

protein structure into fractions based on the percentage of amino acids each Swiss-Prot entry 

contributes to the protein structure. 

A.3 MMseqs2 

MMseqs2 is a software package that clusters databases of proteins and can be downloaded 

at https://github.com/soedinglab/MMseqs2 (Steinegger and Söding 2018; Hauser, Steinegger, and 

Söding 2016). MMseqs2 uses a greedy set cover algorithm and aims to create the fewest number 

of mutually exclusive clusters, given a set of proteins at a user-specified sequence similarity. In 

this paper, I chose the threshold of 30% sequence identity, given that MR will likely be successful 

if the template and the target proteins share at least 30% sequence identity.27 If the identity falls 

below 30%, MR will be usually challenging, if at all possible, to implement (Schmidberger et al. 

2010; Phenix 2022). The algorithm takes the following steps: 
 

1. MMseqs2 first computes all pairwise sequence identities between proteins in Swiss-Prot 

2. MMseqs2 chooses a “representative” sequence, which is the protein with the highest number 

of neighbors that share at least 30% sequence identity 

3. MMseqs2 forms the first cluster with this representative sequence and all of its neighbors 

4. MMseqs2 then looks at the remaining sequences and chooses the next representative 

sequence with the highest number of neighbors 

 
27 I also restricted the search such that the focal protein and the candidate protein shares at 80% coverage 
in their alignment in terms of sequence length. 

https://github.com/soedinglab/MMseqs2
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5. MMseqs2 iterates through Steps 2-4 until all sequences belong in a cluster 
 

This ensures that each member of a cluster shares at least 30% sequence identity with the 

representative sequence of the cluster.28 MMseqs2 is used by both Swiss-Prot and the PDB to 

cluster similar proteins. 

A.4  Sample Construction 

Using the MMseqs2 algorithm, I grouped all 563,552 proteins in Swiss-Prot into 73,956 

mutually exclusive clusters, using 30% sequence identity threshold. 

Restricting to clusters with at least one human protein: I restricted the sample to 

clusters with at least one human protein (n = 13,145 clusters, which is equivalent to 158,623 

proteins). There are two reasons for this restriction. First, restricting to clusters with at least one 

human protein ensures that all of the clusters in the final sample have a minimum baseline level 

of biological importance; one of the main goals of structural biology is to understand human 

biological processes and thus structural biologists are especially interested in proteins from humans 

(and their similarity neighbors). Second, focusing on human proteins mitigates the concern of 

growing cluster size. The total number of possible proteins in the universe is essentially infinite,29 

and new protein sequences are continuously discovered. However, all human proteins have been 

discovered by the early 2000s when the human genome project was completed; since one gene 

encodes one protein, and humans have approximately 20,000 genes, they also have 20,000 

proteins.30 Since the number of newly discovered human proteins have plateaued since the early 

2000s when MR arrived, this alleviates the concern of whether clusters with human proteins are 

 
28 A caveat is that while it is likely that all possible pairs of sequences within the cluster also share at least 
30% sequence similarity with each other (since they are all similar to the representative sequence), this is 
not guaranteed. Mirdita et al. (2017) performed a cluster quality check that mitigates this concern; the 
authors computed the mean sequence identity among all possible pairs of sequences in a cluster and found 
that MMseqs2 indeed yielded clusters where all possible pairs of sequences shared on average >30% sequence 
similarity. 
29 Given that there are 20 different amino acids and an average protein has a sequence length of 200 amino 
acids, this amounts to 20200 possible proteins, which is larger than the number of electrons in the universe 
(Koonin, Wolf, and Karev 2002). 
30 This is called the “one gene, one protein” rule, which contributed to the 1941 Nobel Prize in Medicine. As 
explained in Section 4.1, by translating the DNA sequence of a gene, scientists can determine the protein’s 
existence, and the sequence of amino acids that will appear in the final protein. Recently, the “one gene, 
one protein” rule has been challenged, as one gene may produce multiple proteins through, for instance, 
alternative splicing. Nonetheless, this paper follows the “one gene, one protein” rule since Swiss-Prot provides 
a non-redundant set of proteins, in that all proteins that are encoded by one gene in a species is folded into 
a single entry (including alternative splicing isoforms). 
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getting more structures due to MR or because there are simply more human proteins being 

discovered. To additionally address the concern of changing cluster size, I have specifications that 

control for time-varying cluster size. 

Restricting to clusters born on or before 1998: For each cluster, I compute its 

discovery year by taking the earliest discovery year among the proteins in the cluster.31 Since my 

panel starts in 1999, I kept clusters that were born on or before 1998. This led to my final sample 

of 6,942 clusters (which is equivalent to 136,965 proteins). 

A.5  Difficulty and Importance of Clusters 

 This section describes how cluster-level difficulty and importance scores were constructed. 

Difficulty features are time-invariant, as they reflect the physicochemical properties of the protein. 

Importance features are measured as of 2003, the year MR was introduced, and the analysis 

focuses on proteins that existed by that time. I first compute composite scores at the protein level 

and then aggregate them to the cluster level. 

Below are the features related to technical difficulty of solving a protein: 

• Membrane: what % of amino acids of the protein are in membrane regions? 

• Disorder: what % of amino acids of the protein are in membrane regions? 

• Compositional bias: what % of amino acids of the protein are compositionally biased? 

• Sequence length: binned into percentiles, scaled from 0 to 1.32 

The data is drawn from Perdigão et al. (2015), who constructed these measures using the 2014 

release of Swiss-Prot. To account for discrepancies with the 2020 release used in this study, I 

updated the measures following the same procedures as Perdigão et al. (2015), where needed. 

Below are features related to the importance of a protein: 

• Number of publications about the protein: binned into percentiles, scaled from 0 to 1 

 
31 Protein discovery year is the earliest recorded year of its existence, based on either its initial entry in 
major sequence databases (such as UniProt, the European Molecular Biology Laboratory database, and the 
DNA Data Bank of Japan) or its first earliest mention in a publication, as documented by UniProt. 
32  Longer proteins are generally more difficult to solve structurally, as they often exhibit increased 
complexity in expression and crystallization (Büssow et al. 2005), However, some very short proteins (e.g., 
those under 100 amino acids) can also pose challenges for protein production (Perdigão et al. 2015; Slabinski 
et al. 2007). Since such sequences are rare in my dataset (less than 5%), I include sequence length as a 
positive component of the protein difficulty score (i.e., longer = more difficult). In my predicted brightness 
analysis—where I use Lasso Logit to predict whether a protein has a structure—multiple decile indicators 
of sequence length were selected, with the shortest deciles associated with a higher likelihood of being solved 
and the longest with a lower likelihood. This pattern supports the inclusion of sequence length as a proxy 
for difficulty. 
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• Is the protein targeted by a drug (binary)?33 

• Is the function of the protein known (binary)? 

• Disease relevance (binary)? 

• Is the protein from human (binary)? 

Data on importance was parsed from UniProt, except for drug information which was collected 

from DrugBank. While these importance features serve as conceptually relevant proxies, they 

likely contain more measurement error than the difficulty features, since observed importance 

partly reflects accumulated research effort in addition to intrinsic scientific value. 

Since all of the features above are either naturally bounded or scaled to range from 0 to 1, I 

construct composite measures of difficulty and importance by taking the average of the respective 

features. This approach implicitly assumes equal weights and linearity across features—

assumptions that may not fully capture the true relationship between these characteristics and 

the underlying constructs. One could, in principle, regress these features on whether a protein is 

bright or dark (as in the predicted brightness measure in Appendix A.6), but this conflates whether 

brightness reflects scientific importance or technical feasibility—which the regression cannot 

separately identify. Ideally, difficulty would be measured using data on structure attempts and 

failures, which is a direction that future research could pursue. For the purposes of this robustness 

analysis, however, the composite scores offer a transparent and interpretable approximation of 

technical difficulty and biological importance. 

 To aggregate to the cluster level, I take the average and standard deviation of the proteins’ 

difficulty and importance scores for each cluster. 

A.6  Predicting Brightness 

The identification underpinning difference-in-differences framework hinges on parallel trends 

assumption. While there was no evidence of pre-trends in the event studies as well as in other 

robustness analyses, there may still be concerns over whether bright and dark clusters were 

evolving on different trends for factors unrelated to the introduction of MR. Proteins in bright 

clusters may be inherently more important or easier to solve, which could affect their trajectories, 

regardless of MR. 

 
33 Information on drugs is provided by DrugBank. This dataset provides comprehensive information on 
drugs at various development phases and their targets (i.e., proteins) and is freely available for academic 
use. A limitation of the free version of the data is that it only provides marketing dates for approved drugs, 
and there are no dates on when a drug entered pre-clinical or clinical trial phases. 
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To address this concern, I develop a predicted brightness measure, where I measure whether 

a protein was predicted to be bright in 1998 (i.e. had a structure characterized),34 using ex-ante 

traits related to both technical feasibility and biological importance. 
 

Constructing Predicted Brightness 

I restrict the sample to proteins that were discovered by 1998 (n = 42,547 proteins, of which 

3% had a structure characterized by 1998). For each protein, I compiled features related to both 

technical feasibility and biological importance as of 1998, using more granular versions of those 

summarized in Table 1. 

Specifically, technical feasibility measures include: (i) % of amino acids in membrane regions, 

(ii) % of amino acids in disordered regions, (iii) % of amino acids with compositional bias, and 

(iv) sequence length, binned into deciles.  

Biological importance measures include: (i) the number of publications written about the 

protein (binned into 8 indicators), (ii) the number of drugs targeting the protein (binned into 6 

indicators), (iii) whether the protein’s function was known (binary), (iv) whether the protein has 

disease relevance (binary), and (v) species (85 indicators).35 

I also control for discovery year using 29 indicators (with a single category absorbing all pre-

1970 years). All continuous variables were standardized, and binning thresholds were selected to 

avoid extreme sparsity when creating indicator variables from categorical data. In total, the model 

includes 143 features. 

To estimate the likelihood that a protein was structurally characterized by 1998, I fit a Lasso-

penalized logistic regression model using Python’s scikit-learn library. The model was trained with 

5-fold cross-validation on the full sample, selecting the penalty level that minimized average log 

loss across folds. After identifying the optimal penalty, the final model was fitted on the entire 

dataset. Of the 143 input features, the model selected 28 with non-zero coefficients. 

As shown in Appendix Figure 3A, the model performance was evaluated using both cross-

validated (out-of-sample) predictions and in-sample predictions from the final model. The cross-

validated Receiver Operating Characteristic Area Under Curve (ROC AUC)36 is 0.91, indicating 

strong ability to distinguish between bright and dark proteins. Given that bright proteins were 

 
34 Recall that (actually) bright clusters are defined as whether they had a structure by 1998. 
35 Species was defined at the genus level. If a genus had fewer than 100 observations, the phylum level was 
used instead. Species with fewer than 10 observations even at the phylum level were coded as “other.” 
36 ROC AUC can be interpreted as the probability that a random actually bright protein will have a higher 
predicted brightness than a random actually dark protein. The AUC can range from 0 to 1. 
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rare as of 1998, the Precision-Recall AUC (PR AUC) may provide a more appropriate measure of 

performance, as it focuses on the model’s ability to correctly identify rare positive cases. The 

model achieves a PR AUC of 0.24, eight times larger than the base rate of 0.03, which is what 

would be expected under random guessing. The log loss, which evaluates how well-calibrated the 

predicted probabilities are by penalizing overconfident or incorrect predictions, is 0.09—30% 

improvement over the log loss of 0.13 that would be obtained under the base rate.37 In-sample 

performance is slightly stronger, but the small gap between in-sample and out-of-sample metrics 

indicates that the model is not overfitting. 

Appendix Figure 3B shows the distribution of this predicted brightness, by whether the 

protein was actually bright by 1998. The variation and overlap in predicted brightness between 

actually bright and dark proteins is useful: it allows for comparisons between clusters that were 

similar ex ante but differed in realized brightness. This makes predicted brightness a useful control, 

isolating the effect of MR from underlying differences in observable protein characteristics.  

Finally, from this protein-level prediction, I aggregate up to the cluster-level by taking the 

average of the predicted brightness of all proteins in each cluster. I then use this cluster-level 

predicted brightness in two approaches: (i) including it as a control in the difference-in-differences 

specification and (ii) using it for matching. 
 

Inclusion of Predicted Brightness in the Difference-in-Differences 
 

I modify my baseline difference-in-differences framework to additionally control for predicted 

brightness. Specifically, I adapt Equation 1 to estimate the following: 
 

      Yct = β0 + β1PostMRt ×Brightc + β2PostMRt ×Predicted_Brightc + δt + γc + εct     (2) 
  

Equation 2 compares clusters of proteins that are similarly predicted to have their structures 

characterized by 1998 because they are ex-ante similar in traits related to biological importance 

and technically feasibility, but differ in whether they were actually structurally characterized. 

 The inclusion of predicted brightness helps isolate the added effect of actual brightness. If 

only predicted brightness is associated with post-MR solving activity (i.e., β1 is non-significant 

but β2 is significant), this would suggest that underlying characteristics are driving bright clusters 

to both have had their structures characterized in 1998 and subsequent structure characterization 

 
37 Random guessing log loss can be calculated as -(p⋅ln(p)+(1− p)⋅ln(1−p)), where p is the proportion of 
positive cases (bright proteins). Lower log loss is better. 
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after MR. However, if there is an added effect of being actually bright in addition to being 

predicted bright (i.e., β1 is significant), then this reduces the concern of omitted variable bias. 

Appendix Table 7A reports the results from estimating Equation 2. The coefficients on Post-
MRt × Brightc remain positive and significant; among clusters predicted to be similarly bright, 

there is still an effect of being actually bright. With the exception of Column 3, the coefficient on 

Post-MR × Predicted_Brightc is insignificant. This pattern reinforces the idea that while 

predicted brightness captures observed ex-ante traits, it cannot substitute for the presence of 

actual structural data, which MR requires to operate. These results support the interpretation 

that MR played a causal role in increasing structure solving in actually bright clusters, above 

what would be expected based on ex-ante observables. 

 
Propensity Score Matching on Predicted Brightness 

As an additional robustness check, I leveraged propensity score matching to construct a 

more comparable control group. I implemented a one-to-one nearest-neighbor matching on the 

predicted brightness score, matching without replacement. Unmatched dark clusters were excluded. 

The resulting matched sample includes all bright clusters and a subset of dark clusters with similar 

predicted brightness. I then re-estimated Equation 1 using this smaller, matched sample. As 

reported in Appendix Table 7B, results remain consistent with those from the full sample, 

suggesting that the findings are not driven by the imbalance in ex-ante observables. 
 

A.7  Alternative Sample Construction 

Unbalanced panel: I restrict the sample to include all clusters that were discovered by 

2003 (the year MR was introduced), rather than 1998 (the year before my sample begins) as in 

the main specification. This yields a larger, unbalanced panel of 12,292 clusters. As shown in 

Appendix Table 8A, results remain similar.  

Similarity families: I explore an alternative classification of protein groupings by using 

UniProt’s curated protein families.38 Families are defined using sequence similarity as well as 

structural and functional similarities when available. Unlike the main clustering approach, which 

is based on an algorithmic threshold for sequence similarity defined by the user, the UniProt 

family classification provides a more “stable” partition of the protein universe since they are 

 
38 The list of families can be accessed here: https://www.uniprot.org/help/family_membership. 

https://www.uniprot.org/help/family_membership
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predefined and curated by biologists. These families often capture deeper evolutionary and 

functional relationships; however, the disadvantage is that they may exhibit lower sequence 

similarity. Following the same inclusion criteria as in my main specification, I restrict the sample 

to UniProt protein families that existed as of 1998 and contain at least one human protein.39 As 

shown in Appendix Table 8B, results remain similar. 
 

A.8  Identifying Principal Investigators 

Assigning Author IDs 

Identifying the principal investigator (PI) behind each structure is a challenging task. The 

PDB does not provide author identifiers and only reports the last names and the initial of first 

names of authors, which makes it difficult to distinguish between PIs, especially those with 

common last names. To tackle this, I relied on Torvik (2021)’s Author-ity data, which provides 

disambiguated author IDs for all articles indexed in PubMed, the leading database of life science 

articles.40 This allowed me to identify the author IDs for all PDB structures that had a publication. 

Following scientific norms, I defined PIs as those who appear as the last author.  

22% of structures, however, do not have publications and therefore cannot be directly linked 

to the Author-ity data. For these unpublished structures, I relied on a combination of a set of 

heuristics and extensive manual cleaning to match an author ID to each structure. Specifically:  
 

1. I first grouped all structures by the last authors’ last names and first name initials. 

2. If the last name and the first name initial were associated with a single author ID in the 

Author-ity data among structures with publications, I applied the author ID to the other 

unpublished structures that share the same last name and first name initial. 

i. It is possible that a PI may deposit a few structures in the PDB but never write 

any PDB paper. In this case, I would mistakenly view two PIs as the same PI. To 

reduce this likelihood, I manually reviewed PIs whose last names are common and 

ensured that they appear to be the same PI by reviewing co-authors, structure 

 
39 Some proteins are not assigned to any UniProt family. For these cases, I explore two approaches: treating 
them as singleton families or dropping them from the sample. In both cases, the results remain similar. 
Appendix Table 8B reports the version that includes the singleton families. Additionally, approximately 1% 
of proteins are classified into multiple families. For these proteins, I randomly assign each to a single family 
to maintain mutually exclusive units of analysis. 
40 Due to data availability of Torvik (2021), the sample period for my analyses on PI runs from 1999-2016, 
instead of 2019. 
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titles, organisms they study, middle initial if available, and years of activity in their 

publication history. If it appeared that the unpublished structure’s PI is in fact a 

different scientist, I returned to the entirety of the Author-ity data and looked up 

all authors that share the same last name and first name initial and manually 

identified the most likely match. 

3. For last name and first name initial that were associated with multiple author IDs among 

published structures: I manually reviewed the unpublished structures to assign the 

appropriate author ID using similar procedures as 2b. 

4. For PIs whose last name and first name initials appear on structures but not on any 

published PBD papers: these are likely PIs who peripherally engaged in structural biology 

by depositing a few structures in the PDB, but their research focus was outside of 

structural biology. To find author IDs for them, I followed the procedures below: 

i. I pulled all potential matches that share the same last name and first name initial 

in the Author-ity data. 

ii. I searched if any of these potential matches had the first author of the structure as 

a co-author to narrow the potential matches. I then identified the most likely match 

by reviewing years of publication activity and publication keywords (MeSH) that 

involves proteins. 

iii. For those with common last names with too many potential matches, no author 

ID was assigned to limit false matches. 
 

Using these procedures, I identified author IDs for 98% of structures. 

 

Identifying Affiliations 

To identify affiliation, I leveraged Torvik (2021)’s MapAffil data, which standardized free-

text affiliations available in PubMed articles.41 PubMed started providing affiliation data of first 

authors in 1988 and affiliation for all authors in 2014. As a result, affiliation coverage is limited 

before 1988 (MapAffil merged on complimentary sources, where available), and only the affiliation 

data of first authors is available before 2104. I followed the procedures below to identify affiliations: 
 

 
41 The benefit of using the MapAffil data is that it provides Global Research Identifier Database (GRID) 
codes. This allows me to obtain standardized affiliations from which to match to the 2023 QS World 
University Rankings in Life Sciences and Medicine to identify PIs from elite vs. non-elite institutions. One 
limitation of relying on this ranking is that it does not rank elite research institutions that are not 
universities. 
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1. For structures with publications, I used the affiliation of the last author, where available, 

and the first author if not. Because the norm in science is such that the first author is 

usually the lead graduate student or the post-doc, it is reasonable to assume that the first 

and last authors would share the same affiliation. 

2. For structures without publications: since I have the author ID, I identified other papers 

by the same author in the year to infer the author’s affiliation. 
 

Using these procedures, I identified affiliations for 87% of structures. 
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Appendix B. Solving the Phase Problem 

As explained in Section 3.2.2, elucidating a protein structure requires crystallizing the 

protein and exposing the crystal to X-rays. This generates diffraction patterns as X-rays reflect 

off the crystal. Using a combination of statistical and physical principles, scientists analyze the 

diffraction data to construct a 3D model of the protein structure. 

The “phase problem” is a critical challenge in this process. While X-ray reflections contain 

both amplitudes and phases, only the amplitudes can be directly measured from diffraction 

patterns. Without the phase information, the protein structure cannot be reconstructed. 

This appendix details three methods used to solve this phase problem.42 Two experimental 

phasing methods—isomorphous replacement and anomalous diffraction—solve the phase problem 

de novo, from scratch. These methods do not require templates of previously solved structures but 

are complex and labor-intensive. The third method, molecular replacement, is a computational 

approach that bypasses experimental phasing by leveraging existing templates. 

B.1 Isomorphous Replacement 

The oldest experimental method to solve the phase problem de novo is called isomorphous 

replacement. This method involves making a known change to the target protein and analyzing 

how the change affects diffraction patterns. Structural biologists must produce at least two 

different types of crystals: a “native” target crystal and a “derivative” crystal with a heavy metal 

ion introduced. By comparing the diffraction patterns between the native and the derivative 

crystals, structural biologists can locate the heavy atoms and deduce possible phases of the other 

atoms in the proteins. Isomorphous replacement typically necessitates multiple derivative crystals 

with different heavy metals to fully solve the phase problem. 

Isomorphous replacement can be laborious. Crystallizing proteins is a difficult process, and 

isomorphous replacement requires multiple derivations of the crystal, increasing the challenge 

involved. Furthermore, the metal ion must be introduced in a way that does not disturb the 

protein structure (i.e., maintain isomorphism), which can be difficult to achieve (Foos, Rizk, and 

Nanao 2022) and necessitates many rounds of trial-and-error. 

 
42 To construct this appendix, I consulted and adapted various sources. In particular, Cowtan (2003), Read 
(2005), and Terwilliger et al. (2016) were especially helpful.  
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B.2 Anomalous Dispersion 

The second experimental method to solve the phase problem de novo is called anomalous 

dispersion, where structural biologists vary the X-ray wavelength to induce atoms of specific 

elements in the protein to produce anomalous scattering. While the scattering of atoms is usually 

independent of the wavelength of the X-ray, at their respective “absorption edges,” each atomic 

type produces anomalous scattering, which introduces differences in the intensities of certain 

diffraction spots. By identifying the positions of these anomalous scattering atoms, structural 

biologists gain clues to recover the missing phase information of the rest of the protein. 

While anomalous dispersion has advantages over isomorphous replacement (in particular, 

anomalous dispersion only requires a single crystal), it comes with its own challenges. The 

experiment has to be conducted at high precision because signals from anomalous dispersion are 

weaker than those from isomorphous replacement (Leonard 2018). Because small differences in 

diffraction patterns must be detected, anomalous dispersion experiments require access to 

synchrotron facilities that can provide tunable X-ray beams at high intensities (Oksanen and 

Goldman 2010). Moreover, radiation damage to the crystal is a concern when structural biologists 

need to tune the X-ray wavelength multiple times, as many sets of data are collected from a single 

crystal. 

B.3 Molecular Replacement 

Molecular replacement (MR) allows structural biologists to bypass the time-intensive and 

challenging experimental phasing methods discussed above, eliminating the need for additional 

experiments. Rather than solving the phase problem de novo, MR imports phase information from 

existing structures that are similar to the unknown target structure. 

MR proceeds in the two steps: (i) identifying previously solved structures that can be used 

as templates and (ii) orienting the template structure to match the position of the unknown target 

structure within the crystal. After these two steps, the phase information can be transferred from 

the template to the target protein. 

First, the key insight behind molecular replacement rests on empirical patterns. Proteins 

are composed of sequences of amino acids, and sequence similarity has been observed to be strongly 

correlated with structural similarity. Although the exact mechanisms of how specific amino acid 

sequences determine a protein’s 3D shape are not fully understood, this correlation allows 

structural biologists to leverage MR.  
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Specifically, because sequence similarity is correlated with structure similarity, structural 

biologists can reasonably assess whether a previously solved structure will serve as a suitable 

template for the unknown target protein based on sequence similarities before attempting MR. 

The closer the sequence similarity, the more likely that the previously solved structure and the 

unknown structure of the target protein are also analogous. As a general rule of thumb, MR will 

likely work if the template and target proteins share at least 30% sequence identity. If the sequence 

identity falls below 30%, MR will be usually challenging to implement (Schmidberger et al. 2010; 

Phenix 2022). 

Second, to import the phase information from the known template to the unknown target 

protein, the template protein must be correctly oriented and positioned within the repeating unit 

of the target protein crystal. The template structure is first rotated in three dimensions, and the 

resulting amplitudes and phases are calculated for every orientation. The software program Phaser 

uses maximum likelihood to identify the orientation that best matches the observed experimental 

diffraction patterns of the unknown target protein. The oriented template structure is then placed 

at every possible position in the unit cell. Again, the position that best matches the observed 

experimental diffraction patterns is chosen.  

At the end, Phaser outputs a list of possible solutions with a noise-to-signal metric called 

the “Z-score,” which provides guidance on whether the solution has been identified. Once the 

correct orientation and position of the template structure are found, phase information can be 

directly imported into the unknown target protein. 

 

Molecular Replacement vs. Machine Learning 
 

One note is that while MR and machine learning methods are both data-extrapolation 

approaches that rely on the existence of prior data from which they import information, the 

principles behind MR and machine learning are distinct: MR is based on a pre-specified model 

grounded in the laws of physics, whereas as machine learning learns the model directly from the 

data without such pre-specified models. 

Machine learning takes training data as input, infers a model from the statistical patterns 

in the training data, and then applies the model in unseen test data. In contrast, MR does not 

“learn” a model from the data like machine learning; it instead relies on the physics of X-ray 

diffractions to guide the process. MR involves solving a system of equations that describes the 

interaction of X-rays with the protein crystal lattice. Using numerical optimization, MR 
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determines the correct orientation and position of a template protein within the unit cell to match 

the target protein. 

While the specifics of implementing MR come from models of physics, the ability to use MR 

stems from empirical patterns. As described earlier, although the exact mechanisms of how amino 

acid sequences determine 3D structures remain unclear, structural biologists take advantage of 

the observed correlation between sequence similarity and structural similarity. When structural 

biologists decide what structure to solve, they have a reasonable assessment of whether they can 

use MR based on the availability and sequence of previously solved structures. This allows them 

to assess whether they will be able to bypass the labor-intensive experimental phasing methods 

and use MR. Finally, like machine learning, the key limitation of MR is that it can only work by 

analogy to known structures in the PDB. Just as supervised machine learning requires training 

data, MR cannot be applied if there is no data of similar, previously solved templates. 
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